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1. SYSTEMS ANALYSIS

Rarely has a new approach to theory development offered as great a poten-

tial for impacting the way social scientists develop mathematical models of

social and political phenomena as is the case with graph algebra. Graph

algebra is both a tool and a language that originates from systems theory. It

was originally developed by three social scientists, Fernando Cortés, Adam

Przeworski, and John Sprague, in a seminal volume (Systems Analysis for

Social Scientists) that first appeared in 1974. In this book, I both explain

and extend the language of graph algebra, as well as update its application

to address contemporary mathematical and social-theoretical themes. Thus,

this book is not merely a reference work of ideas previously presented else-

where; there also is a great deal of entirely new material in these pages. This

reflects the fact that graph algebra—like any living language—continues to

grow as the theoretical needs of social scientists expand and evolve. That

graph algebra continues to speak to the needs of social and political theor-

ists is a testament to the power of the ideas of its three originators.

In its essence, the use of graph algebra assists social scientists in devel-

oping new and surprisingly sophisticated mathematical models of complex

social phenomena. This is true for both linear and nonlinear models. Social

scientists use the graph algebra language to translate social scientific theories

into mathematical formulas or models. Indeed, a creative thinker can often

use graph algebra to algebraically ‘‘flesh out’’ even the most complicated

and sophisticated of theories. Importantly, graph algebra can empower social

scientists to ‘‘escape’’ from a dependence on simple linear regression models

that are based on rudimentary intercepts and slopes that reveal little more

than correlations within a set of variables. Moreover, regression can often

be creatively applied to fully estimate intellectually appealing graph algebra

models using commonly available statistical software. This allows social
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scientists to incorporate greater theoretical depth in the algebra of their

models while still utilizing known statistical procedures.

Some readers will find this book to be highly correspondent with recent

initiatives in theory building in the social sciences, perhaps best typified

by efforts pursued by the National Science Foundation. Not long ago, the

National Science Foundation launched an initiative called ‘‘The Empirical

Implications of Theoretical Models’’ (EITM). The EITM (2002) report from

the National Science Foundation states,

A schism has developed between those who engage in formal modeling that is

highly mathematical, and those who employ empirical modeling which empha-

sizes applied statistics. As a consequence, a good deal of research in political

science is competent in one technical area, but lacking in another, that is, a for-

mal approach with substandard (or no) empirical tests or an empirical approach

without formal clarity. Such impaired competency contributes to a failure to

identify the proximate causes explicated in a theory and, in turn, increases the

difficulty of achieving a meaningful increase in scientific knowledge. (p. 1)

While this book is aimed at all the social sciences (and thus is by no means

limited to the discipline of political science), the observation that efforts are

needed in many areas to better link social and political theories to test-

able empirical models is worth noting. The question is, ‘‘How does one do

this?’’ And even more pointedly, ‘‘How does one teach someone to do

this?’’ Coming up with an intellectually interesting algebraic specification

has historically been one of the most challenging things most researchers

have ever had to do, which is why so many scientists rely on the ‘‘canned’’

linear regression model. Some scholars, after noting the difficultly and

seriousness of the problem, have argued that researchers can either search

for their own model specification based on their own theory or, failing that,

perhaps use statistical methods that impose no structure on the analysis.

This latter approach would use ‘‘theory-less methods’’ (see, e.g., Signorino

& Yilmaz, 2003). What this book offers is a means by which such linkages

can be made using a highly practical new graphical language that empowers

social scientists to develop nuanced algebraic models of their theories that

contain a level of intellectual sophistication that might have previously

appeared forbidding, or perhaps even impossible.

There are a number of highly prominent examples of the use of graph

algebra in the social sciences. Sometimes graph algebra is used in the

theory-building stage of a project to assist in the development of a model’s

algebra for a social or political process, but the graph algebra itself is not

presented in the final printed report. This is the case with the seminal vol-

ume Paper Stones: A History of Electoral Socialism by Przeworski and
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Sprague (1986), which contains a theoretically rich analysis of the devel-

opment of leftist voting in Europe during much of the 20th century. In this

case, while graph algebra was used early in the research to develop a

sophisticated model of leftist voting, the book itself presents (and explains)

only the normal algebraic version of the model.

In other cases, the graph algebra itself is presented in the final report of

a research project as a means of helping to simplify the presentation of a

complex model that might otherwise appear inhibiting for some readers. This

indeed is the case with research by Duvall and Freeman (1983), in which

they develop and analyze a model that helps explain how certain elites domi-

nate the industrialization processes in many developing nations. This is also

the case in some of my own research in which I present a model of congres-

sional voting in the United States using graph algebra to help readers retain a

wide-angle view of a somewhat complicated political theory (Brown, 1991,

see especially the appendix to Chapter 7). In other cases, graph algebra has

been effectively included in a final report as a means of emphasizing the link-

age between the model and the social or political theory. This is often useful

even in situations in which the normal algebra itself is not so intimidating, as

in the case of an analysis of electoral institutionalization and voter mobiliza-

tion in many European nations by Przeworski (1975). Thus, graph algebra

can be used ‘‘behind the scenes’’ to develop a sophisticated algebraic specifi-

cation of a complex theory, or it can be used in a more up-front manner that

also assists with the presentation of the theory itself. Either way, researchers

can use graph algebra to help develop, analyze, and present social and politi-

cal theories that incorporate surprising levels of intellectual richness.

Before describing the details of graph algebra, it is worth placing it in

the context of systems theory. Why approach mathematical modeling from

the perspective of systems analysis? Many scientists—whether they work

in the social sciences, physical sciences, natural sciences, or engineering—

often think in terms of systems. Just about everything influences something

else, which in turn either feeds back into itself or affects something differ-

ent. Consider human organizations. We live in systems. Our nations, towns,

international associations, friendship networks, and families are systems.

We have court systems, electoral systems, presidential systems, parliamen-

tary systems, and bureaucratic systems. Our small groups and associations

are systems, just as an inner-city gang is a system regulated by norms that

are enforced with punishments and rewards that maintain membership,

identity, and coherence. The list of systems that surround us goes on and

on, seemingly without end.

Our biology is organized in terms of systems. Our bodies are living sys-

tems, as are each of the smaller components of our bodies, such as our cells,

our nervous systems, our immune systems, our digestive systems, and our
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reproductive systems. Each system depends on another system for its func-

tioning and/or survival, with each level adding new complexity to the macro-

organization of higher levels of systems. The ecology of a lake is a system of

species, with each species having a direct or indirect influence on the others.

A wolf den is a system with a clear sense of hierarchical dominance. An ant

colony is a system with a highly differentiated work hierarchy.

Our physical environment is organized in terms of systems. Houses are

filled with systems. The regulation and control of water in our toilets func-

tions as a system. We live in temperature-regulated environments, with

heating and air conditioning apparatuses that are controlled as a system.

Even a toaster oven is a self-regulating system.

The smallest and largest parts of our universe are organized as systems.

Atoms are systems that we identify by name in the periodic table. Entangled

photons are quantum systems. Galaxies are systems, as are nebulae that give

birth to new stars. Our own solar system is a system that both inspires us and

helps us to measure time and track the seasons.

We organize our thoughts systematically, in the sense that we arrange

different thoughts such that they complete a pattern that is itself an identifi-

able conceptual entity. Indeed, the way in which we process our thoughts is

a system that responds to inputs (stimuli, new information, etc.) and pro-

duces outputs (physical movement, decisions, etc.). It is natural for us to

think in terms of systems because we are enmeshed in them at every level

of our existence. For this reason, it is inevitable that we would seek to use a

language that helps us describe our systems in a manner that lends itself

well to analysis. This need gives rise to ‘‘systems analysis.’’

The term systems theory means different things to different people. Early

pioneers in the field now known as general systems theory include Ludwig

von Bertalanffy (1976), W. Ross Ashby (1956), and Gerald M. Weinberg

(1975). By most estimates, the large and diverse general systems literature

dates back to the 1940s, although the precursors to general systems theory

predate even that. James Grier Miller (1978) made a major contribution in

expanding the definition and scope of general living systems theory, a more

specialized approach to general systems theory as it applies to living organ-

isms of all types. On the other hand, electrical engineers look at systems

theory from the perspective of the flow of electrons through circuitry. Other

engineers see systems theory from the perspective of mechanical inputs and

outputs. Computer programmers look at systems theory from the perspec-

tive of code that specifies a sequential set of instructions. Still others think

of systems theory in other ways.

The focus of this book is on a specific set of mathematical tools that arise

mostly from systems theory as it is encountered in both electrical and phy-

sical engineering. But we address social systems here, not engineering
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systems, regardless of where the mathematical techniques came from ori-

ginally. Also, no effort is spent trying to systematically integrate the mate-

rial presented here with the general systems literature. Indeed, there is only

a tangential link between the contents of this book and the way systems the-

ory is applied in fields outside of the social sciences. The only substantial

connection of these other approaches to systems theory is the consistent

theme that one can investigate a system by understanding how its internal

parts are arranged and how they operate in a coordinated manner.

Systems theory as described in this book dates back to the seminal book

by Cortés et al. (1974). In that volume, the authors translated and reinter-

preted mathematical methods that are predominantly described in the engi-

neering literature such that these methods could be productively used by

social scientists. While their efforts were successful from a utilitarian point

of view, there are nonetheless considerable superficial differences in the

way social systems are described using their approach when compared with

styles common to the engineering disciplines. Most notably, Cortés et al.

describe systems using ‘‘graph algebra,’’ which engineers will more com-

monly reference as ‘‘block diagrams.’’ Also, engineers tend to favor ‘‘signal-

flow graphs’’ rather than block diagrams since they are more compact.

However, the compactness of signal-flow graphs leaves them both more

terse and abstract than would be helpful to most social scientists. Outside of

the engineering literature, block diagrams are also quite commonly used to

describe more general and nonmathematical process-related ideas connected

to general systems theory, and this intellectual baggage would only serve to

confuse a new application of systems mathematics as it applies to the social

sciences. Thus, Cortés et al. chose to mix the block-diagram approach with

the algebraic utility of signal-flow graphs, which led to the term graph

algebra to identify a mathematical style of representing systems that was

uniquely tailored to describing social scientific phenomena.

Graph algebra is best described as a language for translating social scien-

tific theories into mathematical formulas. The language is designed to ease

the model-building process such that users of graph algebra can develop

more sophisticated models of complex social scientific ideas than might

otherwise be possible. We currently do not know the limits of how broadly

graph algebra can be applied to social scientific questions as it is still quite

commonplace for researchers to propose and develop new uses and innova-

tive applications of the language. For example, there have been significant

advances in the mathematics of dynamical systems since graph algebra was

first invented. This is particularly true with respect to systems of differential

and difference equations, chaos theory, and catastrophe theory. Thus, this

book both describes and extends the language of graph algebra, as well as

updates its use with respect to some of these new applications.
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Structure and Function

At the core of systems theory is the identification and description of a

system’s structure, its function, and the response of the system to inputs. In

the most basic terms, a system’s structure is the collection and arrangement

of its parts. The system’s structure is essentially unchanging. Some social

scientists may object to the notion that anything in human affairs is static,

and I have no fundamental quarrel with this position. However, there are

many things that remain approximately the same for a long period of time,

and for our purposes this is sufficient for us to proceed with the description

of social systems. For example, it is true that all democracies evolve, and

with that evolution comes change. But the electoral systems of most demo-

cracies persist unchanged in their essential characteristics for years, and

often decades. Change can occur when, say, in the United States the voting

franchise was extended to women in 1920, when African Americans were

able to vote in large numbers with the banishment of the Jim Crow laws in

the 1960s, or when the voting franchise was extended to 18- to 20-year-olds

in the 1970s. But between those years, and again after the 1970s, the elec-

toral system in the United States has changed very little in terms of its struc-

ture. Moreover, if we reconceptualize vote mobilization as an input into an

electoral system rather than as a part of the structure of the system, we can

argue that only the mobilization inputs have changed and that the voting

system itself has changed very little since the American Civil War.

We do not directly observe the structure of a system in the manner in

which we observe, say, an apple. The structure is only a theoretical concept.

It says that certain rules are followed that organize human activity. For

example, the division of the American electoral system into separate states

and congressional districts is part of the structure of the system. The fact

that a concomitant presidential election every 4 years boosts voting turnout

in every other congressional election (which occurs in a 2-year cycle) is a

feature of the structure of the American electoral system. The use of a win-

ner-take-all ballot and the consequent promotion of a two-party system is

part of the structure of the system. In a parliamentary system of gov-

ernment, proportional representation is part of the structure of the system.

In governments that have hybrid forms of democratic representation, pres-

idents, prime ministers, district-based parliamentary seats, and party lists

are all parts of the structure of an electoral system.

Consider some of the many rules that surround us as members of any

society. These rules are elements of larger structures that we can identify

as the infrastructure that both creates and supports our social systems. For

example, in most societies there are rules against marrying close relatives.
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Stock market trading prohibits insider disclosures of company information.

The Federal Reserve Board in the United States meets in private and often

delays the reporting of its deliberations to avoid volatile market reactions.

The trading of endangered species is prohibited. Gases that destroy the

ozone layer in our atmosphere are often restricted in their use. The safety of

the workplace is often regulated in developed countries. Zoning restricts the

use of private property. Price controls place restrictions on the natural inter-

play between demand and supply. All these examples are parts of structures

for complex systems within which we live. We do not physically see these

structures, but we know the rules that define them. When we talk about

‘‘social theory,’’ we are really discussing the identification and analysis of

social structures. We investigate social structures to understand why they

produce the social reality that we actually do observe.

All system structures provide a function. The function of a system is what

the structure does. In elementary systems, the function of a system trans-

forms the inputs into outputs via a forward path. That is, a system’s struc-

ture receives an input, and that input is changed in some way to produce an

output. In slightly more advanced systems, there can be a feedback path in

which the output reenters the system as a new input. This is how feedback

works in the case of a microphone that picks up sound from speakers and

then feeds that sound back into the amplifier, which then sends it back out

to the speakers, and on it goes until a loud squeal is produced by the speak-

ers. In that case, the structure of the system is the microphone, the amplifier,

and the speakers, all of which are connected in a certain order. The function

of the system is the transforming of input sounds registered by the micro-

phone into output sounds produced by the speakers. In the absence of feed-

back, the amplifier is the only element of the forward path that connects the

microphone to the speakers.

Thus, a system’s structure transforms inputs into outputs via its function.

The inputs vary, and the outputs vary. Intermediate states of the system that

exist after the inputs have gone into the system but before the outputs are in

their final form also vary. But the structure of the system is fixed, or invari-

ant. This means that the rules that define the structure of the system remain

static for a sufficiently long period of time to allow us to investigate the

system’s functioning.

Thus, when we speak of systems, we are normally examining synchronic

change. This is change as found in the inputs and outputs, but within the

context of a system’s structure that is invariant. When the system’s struc-

ture changes, then we have diachronic change. Diachronic change normally

means that a new system has taken over and that the old system is obsolete.

In practical terms, diachronic change typically requires social scientists to
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develop a new theory, and a new model. However, it is worth pointing out at

this juncture that systems can sometimes be sufficiently sophisticated in

their structure such that what once may have been considered an emergence

of diachronic change can be explained within the context of a single model’s

experience of synchronic change. For example, this is a prominent feature of

models that employ catastrophe theory (see Brown, 1995b).

An Overview of the Substantive
Examples Found in Subsequent Chapters

The greatest strength of graph algebra is its flexibility—as a language—in

working within a great variety of substantive contexts. For this reason, I

have attempted to show throughout this book how graph algebra works

using a diverse collection of examples. Some of these examples are very

basic, as would be needed heuristically to convey the essential mechanics

of the graph algebra grammar. But other examples are much more extensive,

raising new and potentially provocative specification questions regarding

well-known models that have existed in the extant social science literatures

for some time.

In Chapter 2, I begin by using graph algebra to ‘‘re-create’’ the linear

regression model. This is an especially useful example because it allows the

later (and more complex) models to be placed in stark contrast with the

nearly overbearing simplicity of the linear model. I then develop a simple

voter mobilization model that applies some of the basic feedback capa-

bilities of graph algebra and finish the chapter by using graph algebra to

develop the well-known Keynesian multiplier from economics.

Chapter 3 further extends the voter mobilization model as I introduce the

use of time operators with graph algebra, especially in systems involving

feedback and control. In one case, I discuss this with respect to the elections

held in Iraq in 2005. But I also discuss how these ideas can be related to

other substantive areas, such as population growth in China. At the end of

Chapter 3, I show one approach to estimating graph algebra models using

an example of labor union membership in the United States.

Chapters 4 and 5 describe how graph algebra can be used with systems of

equations. In both these chapters, I develop an extensive and running exam-

ple of the arms race model of Lewis Fry Richardson. I first show how

Richardson’s original model can be specified using graph algebra and then I

demonstrate how his model may in fact be a reduced-form version of a

number of more complicated models. The more complicated models often

seem to capture the substantive intent of Richardson’s ideas more than his
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original specification, and these examples are used to demonstrate how easy

it is to work theoretically with graph algebra. I also demonstrate one approach

to estimating these models using ordinary least squares. While Chapter 4

focuses on the setting of discrete time, Chapter 5 moves the discussion to con-

tinuous time models.

Chapter 6 introduces the rich topic (and one of my personal favorites) of

how to use graph algebra to work with nonlinear systems. While there are a

great many algebraic approaches to nonlinearity, I organize the discussion

beginning with relatively simple mechanics involving nonlinear filters

before turning to more complex forms. As the chapter progresses, I explain

how graph algebra can be used to model various versions of logistic growth,

a common feature of many population models. I also address how graph

algebra can be applied relatedly to the ideas of concurrent and lagged envi-

ronmental decay, global warming, and rising sea levels. The chapter then

turns to the issue of chaos, and graph algebra is used to specify the equa-

tions that produce Lorenz’s well-known chaotic strange attractor. Finally, I

return to Richardson’s arms race model by showing how one can explore

this model in combination with a forced oscillator.

Chapter 7 introduces the idea of using conditional paths with graph alge-

bra. I begin by describing how conditional paths relate to important theory-

building ideas that are current in the sociological literatures. I then show how

graph algebra can work with decision or choice theory. It is possible to use

choice theory to manipulate the structure of a system as it is operating in real

time. Applications include a revised look at Richardson’s arms race model,

as well as how to model the transition from authoritarian to democratic rule

in China using catastrophe theory. These ideas allow theorists to blend the

two worlds of individual choice and stimulus-response that so often (and

perhaps unnecessarily) seem at polar opposites of the theoretical spectrum.

In Chapter 8, I show how shocks and other forms of stochasticity can be

introduced into a graph algebraic representation of a system. Here, I return

to the logistic model and offer an example of how this model may be modi-

fied using graph algebra to address the issue of population growth in the

context of an environmental disaster. I then extend this discussion to a simi-

lar context, but with respect to a rapid rise in oil prices. Both these issues

are highly topical in contemporary times, and researchers will want to use

graph algebra to add realistic complexity to their models of these and other

vitally important topics.

Chapter 9 turns to the issue of the implied theoretical content of the graph

algebra language itself. Here, I categorize three types of system equilibria,

system stability, variable stability, and meta-equilibrium, within a system

cascade. Here is also where I approach the subject of graph algebra using

the broadest theoretical brush, and I relate the issue of system stability to

9



ideas of societal development raised by theorists such as Nisbet, Rostow,

Organski, Ingelhart, and Pye. Graph algebra need not be limited to those

realms in which one wants to resolve a parameter’s value. Indeed, graph

algebra can be used narrowly to specify a model for a specific question or

problem or broadly to theorize within intellectual realms of significant

expanse, or anywhere in between.

2. GRAPH ALGEBRA BASICS

The use of graph algebra can yield marked benefits to theory building in the

social sciences, and it is useful to view these benefits when considering

the linear regression model. Arguably, the most common model used in the

social sciences is the linear regression model. While many approaches to

parameter estimation exist for linear models, the ultimate result is typically

a table with a list of independent variables and their associated parameter

estimates and standard errors. From this perspective, the list of variables in

the table is the model. Specification concerns usually revolve around the

question of whether or not a researcher has omitted one or more important

variables from the analysis, although sometimes the issue of functional form

also is involved.

While graph algebra does not reduce a researcher’s need to be aware

of potential omitted variable specification problems, it does allow the

researcher much greater flexibility with respect to designing innovative and

intellectually appealing functional forms. As an absolute minimum, graph

algebra allows us to develop more sophisticated model specifications such

that the algebraic form of the model becomes as important as the variables

that exist within that form. Thus, systems theory as it is expressed through

graph algebra offers a means of developing algebraic formulations that cor-

respond with social and political theories that are more complex and sophis-

ticated than the ubiquitous linear form. Thus, as a movement away from

the linear model, the use of graph algebra encourages the development of

increasingly interesting scientific theories. Moreover, as will become clear

by the end of this book, such theories find their origin in the thinking of the

theorist, not in the graph algebra itself.

A researcher gains the benefits of graph algebra by mastering its func-

tionality as a language. Graph algebra is the language that we use to des-

cribe a system’s structure and functioning. With graph algebra we identify

the parts of the system’s structure, and then we connect those parts in a

process that identifies the structure’s functioning. Thus, the system’s
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