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INTRODUCTION

The distinction between causation and associ-

ation has figured prominently in science and

philosophy for several hundred years at least,

and, more recently, in statistical science as

well, indeed, since Galton, Pearson and, Yule

developed the theory of correlation.

Statisticians have pioneered two

approaches to causal inference that have

proven influential in the natural and

behavioral sciences. The oldest dates back

to Yule (1896), who wrote extensively about

‘illusory’ correlations, by which he meant

correlations that should not be endowed

with a causal interpretation. To distinguish

between the illusory and non-illusory

correlations, Yule invented partial correlation

to ‘control’ for the influence of a common

factor, arguing in context that because the

relationship between pauperism and out

relief did not vanish when ‘controlling’ for

poverty, this relationship could be deemed

causal. A half century later, philosophers,

psychologists and social scientists (e.g.,

Reichenbach, 1956; Simon 1954; Suppes

1970) rediscovered Yule’s approach to

distinguishing between causal and non-causal

relationships, and econometricians (e.g.,

Granger 1969) extended this idea to the

time-series setting. Graphical models, path

analysis and, more generally, structural
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equation models, when these methods are

used to make causal inferences, also rely

on this type of reasoning. The theory of

experimental design, which emerges in

the 1920s and thereafter, and is associated

especially with Neyman (1923) and Fisher

(1925), forms the basis for a second approach

to inferring causal relationships. Here, the

use of good design, especially randomization,

is emphasized, apparently obviating the need

to worry about spurious relationships.

Despite these important contributions, dur-

ing the majority of the twentieth century,

most statisticians espoused the view that

statistics had little to do with causation.

But the situation has reversed dramatically

in the last 30 years, since Rubin (1974,

1977, 1978, 1980) rediscovered Neyman’s

potential outcomes notation and extended

the theory of experimental design to obser-

vational studies. Currently, there is a large

and growing inference in statistics on the

topic of causal inference and this second

approach to inferring causal relationships

is coming to dominate the first approach,

even in disciplines such as economics,

which rely on observational studies and

where the first approach has traditionally

dominated.

This chapter provides an introduction,

tailored to the concerns of behavioral sci-

entists, to this second approach to causal

inference. Because causal inference is the

act of making inferences about the causal

relation and notions of the causal relation

differ, it is important to understand what

notion of causation is under consideration

when such an inference is made. Thus, in

the next section, I briefly review several

notions of causation and also briefly examine

the approach to causal inference that derives

from Yule. In the section ‘Unit and average

causal effects’ the second approach, which

is built on the idea that a causal relation

should sustain a counterfactual conditional

statement, is introduced, and a number of

estimands of interest are defined. The section

‘Identification of causal parameters under

ignorable treatment assignment’discusses the

identification of causal effects and the next

section, ‘Estimation of causal parameters in

randomized studies’, discusses estimation.

The section ‘Mediation analyses’ takes up the

topic of mediation, which is of special interest

to psychologists and prevention scientists.

I show that the usual approach to mediation,

which uses structural equationmodeling, does

not yield estimates of causal parameters,

even in randomized studies. Several other

approaches to mediation, including principal

stratification and instrumental variables, are

also considered.

CAUSATION AND PROBABILISTIC

CAUSATION

Regularity theories of causation are concerned

with the full (or philosophical) cause of an

effect, by which is meant a set of conditions

that is sufficient (or necessary or necessary

and sufficient) for the effect to occur. This

type of theory descends from Hume, who

claimed that causation (as it exists in the

real world) consists only of the following:

(1) temporal priority, i.e., the cause must

precede the effect in time; (2) spatiotemporal

contiguity, i.e., the cause and effect are

‘near’ in time and space; and (3) constant

conjunction, i.e., if the same circumstances

are repeated, the same outcome will occur.

Many subsequent writers argued that Hume’s

analysis cannot distinguish between regular-

ities that are not causal, such as a relation

between two events brought about by a

common factor, and genuine causation.At the

minimum, this suggests that Hume’s account

is incomplete. A number of philosophers

[e.g., Bunge (1979) and Harré and Madden

(1975)] argue that the causal relation is

generative. While this idea is appealing,

especially to modern scientists who speak of

mechanisms, attempts to elaborate this idea

have not been entirely successful. Another

approach (examined later) is to require

causal relationships to sustain counterfactual

conditional statements.

Hume’s analysis is also deterministic,

and the literature on probabilistic causation

that descends from Yule can be viewed as
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an attempt to both relax this feature and

distinguish between causal and non-causal

regularities. The basic idea is as follows. First,

there is a putative cause Z prior in some

sense to an outcome Y . Further, Z and Y

are associated (correlated). However, if the

Z − Y association vanishes when a (set of)

variable(s) X prior to Z is conditioned on

(or in some accounts, if such a set exists),

this is taken to mean that Z ‘does not cause’

Y , that is, the relationship is ‘spurious’. To

complete the picture, various examples where

this criterion would seem to work well have

been constructed.

Granger causation and structural equa-

tion models use this type of reasoning to

distinguish between empirical relationships

that are regarded as causal and not causal.

For example, consider a structural equation

model, with X a vector of variables, Z an

outcome occurring after X, and Y an outcome

after Z . If the ‘direct effect’ of Y on Z is 0

(not 0), Z is not viewed (viewed) as a cause

of Y . A sufficient condition for this direct

effect to be 0 is that Y and Z are conditionally

independent, given X . Of course, this same

kind of reasoning can be extended to the

consideration of other types of direct and

indirect effects. For example, consider the

case of a variable X associated with Z , with

X and Y conditionally independent, given Z ,

implying the ‘direct effect of X on Y is 0, and

Z and Y not conditionally independent given

X , implying the ‘direct effect’ of Z on Y is

non-zero. Here there is an effect of X on Y ,

but the effect is indirect, through Z .

There are a number of problems with this

approach. First and foremost, it confounds

causation with the act of inferring causation,

as evidenced by the fact that the criteria

above for inferring causation are typically

put forth independently of any explicit notion

of the causal relation. As notions of the

causal relation vary, this method of inferring

causation may be appropriate for some

notions of causation, for example, the case

where causation is regarded as a predictive

relationship among variables, but not for

others. Nor (because the nature of the casual

relation is not explicitly considered), is it clear

whether causation is viewed as probabilistic

in some inherent sense or if probability arises

in some other way. The deficiencies of this

approach are evident in the psychological

literature on casual modeling, where a variety

of extra-mathematical considerations (such as

model specification) are used to suggest that

model coefficients can be endowed with a

causal interpretation (see, for example, Sobel

1995 on this point).

By way of contrast to regularity theo-

ries, manipulability theories view causes

as variables that can be manipulated, with

the outcome depending on the state of the

manipulated variable. Here, as opposed to

specifying all the variables and the functional

relationship between these and the outcome

(which would constitute a successful causal

account of a phenomenon under a regularity

theory), the goal is more modest, to examine

the ‘effect’ of a particular variable. See Sobel

(1995) for a reconciliation of these two

approaches.

Manipulability theories require the causal

relation to sustain a counterfactual conditional

statement (e.g., eating the poison caused John

to die means that John ate the poison and

died, but had John not eaten the poison,

he would not have died). This is closer to

the way an experimentalist thinks of cau-

sation. However, many philosophers regard

manipulability theories as anthropomorphic.

Further, many questions that scientists ask

are not amenable to experimentation, e.g,

the effect of education on longevity or

the effect of marriage on happiness. This

would appear to seriously limit the value of

this approach for addressing real scientific

questions.

However, even without manipulating a per-

son’s level of education, one might imagine

that had this person’s level of education

taken on a different value than that actually

realized, this person might also have a

different outcome. This suggests adopting the

broader view that it is not the manipulation

per se, but the idea that the causal variable

could take on a different value than it

actually takes on, which is key. This is the

idea underlying counterfactual theories of
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causation (e.g., Lewis 1973),where the closest

possible world to the one we live in serves as

the basis for the counterfactual.

Counterfactual theories also have their

difficulties, both theoretical and practical.

One criticism goes under the rubric of

‘preemption’. PersonAshoots person C in the

head, and C dies. It seems natural to claim

that person A caused person C to die. Yet,

suppose that if A had not shot C, B would

have done so and C would also have died. In

that case, C dies whether or not A shoots him,

so one cannot (under a simple counterfactual

theory) say A caused C to die. This seems

wrong.

In practice, the outcome may also depend

on the way in which the cause is brought

about. When an experiment is performed,

this issue is not, per se, problematic, and

the effect corresponding to that manipulation

is well defined. Otherwise, as there may be

different outcomes, ‘the effect’ is ill-defined,

unless the closest world is specified; in some

instances, this will be a very difficult task.

This suggests that some questions, e.g., the

effect of marriage on happiness, may be better

left unasked (or at the minimum, one must

specify the hypothetical intervention bywhich

persons are exposed/not exposed to marriage

and to marriage partners).

I now turn to the recent statistical literature

on causal inference, which is also based

on the idea that causal relations sustain

counterfactual conditionals. This approach

to casual inference (as suggested by the

preceding material) is not concerned with

elucidating the various causes of the outcome

(effect) and the way in which these causes

produce the effect, but with the more limited

goal of inferring the effect (in a sense to

be described) of a particular causal variable.

Scientists who are interested in a fuller

accounting of the causes of an effect and

the pathways through which the effect is

produced may find this approach less than

entirely satisfying. However, as discussed

subsequently, this approach can also beused to

evaluate methods (such as structural equation

models) that researchers sometimes use to

provide a fuller account, and it is not hard to

show that these methods rest on a number of

implausible assumptions.

UNIT AND AVERAGE CAUSAL EFFECTS

The notion of causation congruous to recent

statistical work on causal inference has two

important properties. First, the causal relation

is singular, i.e., it is meaningful to speak of

effects at the individual level and these effects

may vary over individuals (heterogeneity).

Second, causal statements sustain counterfac-

tual conditionals. Thus, we might state that

attending health class causedBill to drink less,

by which we mean that Bill went to health

class and later drank amount y, whereas had he

not attended health class, later he would have

drunk y∗ > y. For Mary, perhaps the outcome

is the same whether or not she attends, in

which case wewould say that attending health

class did not cause Mary to drink less (or

more). Note that only attending health class

is considered as the cause. Other possible

causes, e.g., sex, are regarded as part of the

causal background (pretreatment covariates in

statistical language).

The single most important contribution

in this literature is the potential outcomes

notation developed by Neyman (1923) and

Rubin (1974) to express the ideas above.

Using this notation allows causal effects to

be defined independently of the association

parameters that are actually estimated in

studies; one can then ask whether and under

what conditions these associations equal the

causal effects. Consider the case of an

experiment where unit i in a population P is

assigned (or not) to receive a treatment. The

data for this unit is typically written as:

(Zi, Yi, X i), where Zi = 1 if i is assigned

to receive the treatment, 0 otherwise, Yi is

the value of the outcome and X i is a vector

of covariates. Although this representation

is adequate for descriptive modeling [e.g.,

the regression function E(Y | Z, X)], it does

not adequately express the idea that Z might

take on different values and that i’s outcome

might vary with this. One way to formalize

this idea is to consider two outcomes for i,
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Yzi(0), the outcome i would have if he is

not assigned to receive treatment and Yzi(1),

the outcome i would have if he is assigned

to receive treatment. With this notation, it is

then straightforward to define singular causal

effects (unit effects) h(Yzi(0), Yzi(1)) [where

there is no effect if Yzi(0) = Yzi(1)]; the unit

effects then serve as the building blocks for

various types of average effects.

Were it possible to take a sample from

(Yz(0), Yz(1)), it would be a simple matter

to obtain the unit effects h(Yzi(0), Yzi(1)) for

the sampled units and to estimate various

parameters that are functions of these. The

literature on causal inference arises from the

fact that it is only possible to observe one of

the potential outcomes.

A limitation of the notation above is that

only a scalar outcome and a binary treatment

are considered. Because the generalization to

a random object and to arbitrary types of

treatments is trivial and does not generate

substantially new issues, I continue to treat

the case of a binary treatment and scalar

outcome. A more serious limitation (though

it is again not difficult to generalize this

notation) that does generate new issues is

that the notation above does not allow for

interference (Cox, 1958), that is, i’s potential

outcomes are not allowed to depend on the

treatment received by other units. Rubin

(1980) calls this the stable unit treatment

value assumption (SUTVA). Although this

assumption is often reasonable and almost

universally made, there are many instances in

the social and behavioral sciences where it is

untenable. For example, in schools, children

in the same (or even different) classrooms

may interfere with one another. This case has

been studied byGitelman (2005); for themore

general case, see Halloran and Struchiner

(1995) and Sobel (2006a, 2006b). Hereafter, I

shall assume SUTVA holds.

Although the unit effects above cannot be

determined (since only one of the potential

outcomes is ever observed), it turns out

remarkably that under suitable conditions

(discussed later) various types of averages of

these effects are nevertheless identifiable and

can be consistently estimated.

As a simple example, consider the case

above, with h(Yzi(0), Yzi(1)) = Yzi(1) −

Yzi(0). The ‘intent to treat’ estimand (here-

after ITT), which is commonly featured in

connection with randomized clinical trials, is

defined as:

E(Yz(1)− Yz(0)), (1)

the average of the unobserved unit effects.

Because the expected value is a linear

operator, the ITT can also be expressed as

E(Yz(1)) − E(Yz(0)). Thus, if it is possible

to take a random sample of size n from P

and then take random sub-samples from Yz(1)

and Yz(0), the difference between the sample

averages:

∑n
i=1 ZiYi∑n

i=1 Zi

−

∑n
i=1(1− Zi)Yi∑n

i=1(1− Zi)
(2)

is an unbiased and consistent estimator of

the ITT.

The ITT is one of a number of possible

parameters of interest and may not always be

of greatest scientific or policy relevance. It

measures the effect of treatment assignment,

and as subjects may not always take up the

treatments to which they are assigned, the ITT

does not measure the effect of treatment itself.

A policy maker might nevertheless argue that

the ITT is of primary interest because it

measures the effect that would be actually be

observed in the real world. As an example,

consider the effect of a universally free school-

breakfast program vs. the current Federal

program (Crepinsek et al., 2006) on total food

and nutrient intake. Some students will take

up the free breakfast, others will not. From

the policy maker’s perspective, if the program

is highly effective amongst those who take it

up, but the takers are a small percentage of

those who might benefit, the program may be

judged a failure.

In observational studies where treatments

are not assigned, one observes only whether

or not a subject takes up a treatment (D = 1) or

not (D = 0); defining the potential outcomes

as Ydi(0) and Ydi(1), interest often centers on
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the average treatment effect (hereafter ATE):

E(Yd(1)− Yd(0)) (3)

or the effect of treatment on the treated (ATT):

E(Yd(1)− Yd(0) | D = 1). (4)

Neyman (1923) first considered the ATE.

The ATT was first considered by Belsen

(1956) and discussed in detail by Rubin

(1978). The ATE measures the average effect

if all persons in the population are given

the treatment, whereas the ATT measures

the average effect of the treatment in the

subpopulation that takes up the treatment.

The ATE is a natural parameter of interest

if the treatment corresponds to a policy

that is under consideration for universal and

mandatory adoption. In cases where adoption

is voluntary, some economists have argued

that only the ATT is relevant, because it

reflects what would actually occur if the

policy were to be implemented. However, one

might also want to know if those who do

not adopt the policy would benefit, because

an affirmative answer might suggest to a

policy maker that efforts focus on increasing

the take up rate. Additionally, if the ATT is

positive, and personswho have not take up the

policy have access to this type of information,

they might be more motivated to do so. This

suggests that in general, for policy purposes,

one might wish to know, in addition to the

ATT, the average effect of treatment on the

untreated (ATU) and the ATE, which is a

weighted average of the ATT and ATU. The

ATE will also be a more natural parameter of

interest than the ATT in many contexts where

the focus is on the basic science, where the

causal variable may not be one that can be

manipulated for policy purposes.

Various other parameters may also be

of interest. First, for both scientific and

policy reasons, one often wants to know

whether the effects above vary in different

sub-populations defined by characteristics

of the units. Let X denote a vector of

variables that are not affected by the treatment

(or assignment variable), for example, take

X to be a vector of pretreatment covari-

ates. This leads to consideration of the

parameters ITT(X), ATE(X), and ATT(X),

where, for example, ATE(X) is defined as

E(Yd(1)− Yd(0) | X), and the other parame-

ters are defined analogously.

Although attention herein focuses on the

parameters above, a number of other inter-

esting and/or useful parameters have been

defined and considered. Bjőrklund andMoffitt

(1987) defined (and discussed the economic

relevance of) the marginal treatment effect

for subjects indifferent between participating

or not in a program of interest. Quantile

treatment effects, the difference between the

marginal quantiles of Y (1) and Y (0), were

defined by Doksum (1974) and Lehmann

(1974); these effects have received some

attention recently (e.g., Abadie, Angrist and

Imbens, 2002). A parameter (discussed sub-

sequently) that has received much attention

lately is the local average treatment effect

(LATE) considered by Angrist, Imbens and

Rubin (1996).

Many other parameters might also be

considered. A decision maker might wish to

consider the utilities of the potential outcome

values and ask whether a treatment increases

average utility or someothermeasure of social

welfare; this is a matter of considering U(Y )

as opposed to Y .

The average effects above take as building

blocks the unit differences Ydi(1) − Ydi(0)

(or Yzi(1) − Yzi(0)). As will be evident

later, because averages of these depend

only upon the marginal distributions of

Yd(0) and Yd(1), the effects in question are

identified if the marginal distributions are

identified. Parameters that depend on the joint

distribution of the potential outcomes may

also be defined (e.g., the proportion who

would benefit from treatment), but the data,

even from a randomized experiment, typically

contain little or no information about this

joint distribution, so these parameters will not

be identifiable without introducing additional

assumptions. While this may appear to be a

serious limitation, several comments are in

order. First, sometimes a transformation may

produce an estimand of the desired form.
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For example, for positive variables, with

h(Yd(0), Yd(1)) = Yd(1)/Yd(0), redefining

the potential outcomes as log Yd(0) and

log Yd(1) gives transformed effects in the

desired form. Second, in decision making,

the additional information contained in the

joint distribution may be irrelevant (Imbens

and Rubin, 1997) to the policy maker. Third,

at least occasionally, plausible substantive

assumptions could lead to identification of the

joint distribution of the joint distribution. For

example, let the outcome be death (1 if alive,

0 if dead) and suppose one wants to know

the proportion benefiting under treatment; it

is easy to see that if treatment is at least

not harmful, the joint distribution is identified

from the marginal distributions of the poten-

tial outcomes. However, in general, this is not

the case, and as there is likely to be very little

scientific knowledge about quantities like the

joint distribution of potential outcomes in a

study in which the marginal distribution is not

even assumed to be known, the identification

of parameters involving the joint distribution

will typically require making assumptions

that are substantively heroic (although per-

hapsmathematically convenient) andpossibly

quite sensitive to violations.

I now consider the identification of causal

parameters.

IDENTIFICATION OF CAUSAL

PARAMETERS UNDER IGNORABLE

TREATMENT ASSIGNMENT

Random assignment is an assumption about

the way units are assigned to treatments. At

the heart of randomized experiments, this

assumption enables identification of causal

parameters. In the simplest case where each

subject is assigned with probability 0 < π <

1 to the control condition and probability 1−π

to the treatment condition, randomassignment

implies treatment assignment is “ignorable”,

i.e., Z is independent of background covari-

ates and potential outcomes:

Z‖X, Yz(0), Yz(1) (5)

To see how (5) is used for identification,

note that whether or not randomization is

assumed to assign subjects to treatments, what

can actually be observed is a sample from

the joint distribution of (Y , Z, X). From this

distribution, the conditional distributions Y |

Z = z for z = 0, 1 are identified, and as

Y = ZYz(1)+(1−Z)Yz(0), the distributionY |

Z = z is the distribution Yz | Z = z. Thus, the

population means E(Y | Z = 1) = E(Yz(1) |

Z = 1) and E(Y | Z = 0) = E(Yz(0) | Z = 0)

are identifiable, so the difference:

E(Y | Z = 1) = E(Yz(1) | Z = 1)−

E(Y | Z = 0) = E(Yz(0) | Z = 0) (6)

is also identified. In general, (6) does not equal

(1) because the identified conditional distri-

butions Yz | Z = z, z = 0, 1, are not equal to

the corresponding marginal distributions Yz,

z = 0, 1. But under the random assignment

assumption, (5) holds, implying equality of

the two sets of distributions; hence (6) = (1).

Often an investigatorwill alsowant to know

if the value of the ITT depends on covariates

of interest. The parameter of interest is then

ITT (X) = E(Yz(1) – Yz(0) | X). As (for the

case above):

0 < πz(X) ≡ Pr(Z = 1 | X) < 1, (7)

and since assumption (5) implies:

Z‖Yz(0), Yz(1) | X, (8)

that is, assignment is random within levels of

X, ITT(X) is identifiable and equal to:

E(Y | Z = 1, X)− E(Yz(0) | Z = 0, X).

(9)

Just as the assumption of random assignment

is the key to identifying causal parameters

from the randomized experiment, the assump-

tion of random assignment within blocks

(sub-populations) is the key to identifying

causal parameters from the randomized block

experiment. It is also the key to making causal

inferences from observational studies.
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When assumptions (7) and (8) hold, treat-

ment assignment is said to be strongly ignor-

able, given X (Rosenbaum and Rubin, 1983).

In observational studies in the social and

behavioral sciences, where subjects choose

the treatment received (D), the assumption:

D‖X, Yd(0), Yd(1) (10)

[akin to (5)] is likely to be unreasonable,

as typically evidenced by differences in the

distribution of covariates in the treatment and

control groups. However, if the investigator

knows (as in a randomized block experiment)

the covariates that account for the differential

assignment of subjects into the treatment and

control groups:

D‖Yd(0), Yd(1) | X, (11)

and if:

0 < πd(X) ≡ Pr(D = 1 | X) < 1, (12)

for all X, i.e., treatment received D is strongly

ignorable given X , the parameter ATE(X):

E(Yd(1)− Yd(0) | X) (13)

is identified and equals E(Y | X, D = 1) −

E(Y | X, D = 0). It also follows that ATE(X)

=ATT(X):

E(Yd(1)− Yd(0) | X, D = 1). (14)

Typically, the investigatorwill be interested

not only inATE(X) and/orATT(X), but also in

ATE=EP (ATE(X)) andATT=EP∗(ATT(X)),

where P∗ is the sub-population of units that

receive treatment. Note that ATT (= ATE

because these parameters are obtained by

averaging over different units: the ATE is a

weighted average of the ATT and the ATU.

More generally, as at the beginning of

this section, under the types of ignorability

assumptions above, it is possible to identify

the marginal and conditional (given X) dis-

tributions of the potential outcomes in P and

to therefore consider any causal estimand that

can be defined in terms of these distributions.

I do not consider this matter further here, save

to note that estimating these distributions will

(when the outcome Y is metrical) typically

be more difficult than estimating the average

causal effects above.

Second, the average effects above can be

identified under weaker ignorability assump-

tions than those given here. For example,

ATE(X) and ATT(X) are identified under the

marginal ignorability assumption:

D‖Yd(d) | X (15)

for d = 0, 1, and occasionally using this

weaker assumption is advantageous. It also

obvious that for estimating means, ignorabil-

ity assumptions can be replaced by the weaker

condition of so-called ‘mean independence’,

e.g., E(Yd | X, D = d) = E(Yd | X). How-

ever, it is difficult to think of situations where

mean independence holds and ignorability

does not. Additionally, mean independence

does not hold for functions ofY , such asU(Y ),

the utility of Y . Thus, I do not consider this

further.

In observational studies, it will often be the

case that an investigator is not sure if he/she

has measured all the covariates X predictive

of both the treatment and the outcome.

Not surprisingly (as it is not possible to

observe both potential outcomes), ignorability

assumptions are not, per se, testable; attempts

to assess such assumptions invariably rely

on various types of auxiliary assumptions

(Rosenbaum, 1987; Rosenbaum, 2002).

When an investigator believes there are

variables he/she has not measured that predict

both the treatment and the potential outcomes,

it is nevertheless sometimes possible (using

other types of assumptions) to estimate

the parameters above (or parameters similar

to these). The section ‘Mediation analyses’

examines the use of this approach in the

context of mediation. Another approach that

has been used involves the use of fixed effects

models (and differences in differences) to

remove the effects of unmeasured variables.

When the investigator knows the treatment

assignment rule, but the assignment proba-

bilities are 0 and 1, as is the case in risk
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based allocation (Thistlethwaite and Camp-

bell, 1960), causal inferences necessarily

rely on extrapolation. Nevertheless, in some

cases, reasonable inferences can be made

(Finkelstein, Levin and Robbins, 1996).

Other approaches in the absence of

ignorability include bounding causal effects

(Manski, 1995; Robins, 1989). Bounds that

make few assumptions are often quite wide

and not especially useful. Nevertheless, when

assumptions leading to tighter bounds are

credible, this approach may be quite helpful.

Additionally, sensitivity analyses can also be

very useful; if ignorability is violated due to

an unmeasured covariate, but the results are

robust to this violation, credible inferences

can nevertheless be made (see Rosenbaum,

2002, for further material on this topic).

ESTIMATION OF CAUSAL

PARAMETERS IN RANDOMIZED

STUDIES

I consider ITT(X) and ITT in this section,

using these cases to introduce the primary

ideas underlying the estimation of causal

effects in the simplest setting. The discussion

is organized around two broad approaches:

(1) using potential outcomes imputed by

regression or some other method (e.g.,

matching) andusing the observed and imputed

outcomes to estimate ITT; and (2) reweighting

the data in the treatment and control groups

to reflect the composition of the population P

(or an appropriate subpopulation thereof). The

estimators considered under the first approach

have been used in the experimental design

literature for many years and will be familiar

to most readers.

Estimation of ITT(X) and ITT in
randomized studies

The simplest case, previously considered,

estimates the ITT using (2) under the

identification condition (5). It is also useful

to note that (2) is also the coefficient τ̂ in the

ordinary least squares regression of Y on Z:

Yi = α + τZi + εi, (16)

i = 1, . . ., n, where the parameters are identi-

fied by the assumption E(ε) = 0.

The estimator (2) also arises by predicting

the missing outcomes Yzi(0) (if Zi = 1) or

Yzi(1) (if Zi = 0) using the estimated mini-

mum mean square error predictor Ê(Y | Z).

Let Ŷzi(0) = Yzi(0) if Zi = 0, and α̂ = Ê(Y |

Z = 0) otherwise, Ŷzi(1) = Yzi(1) if Zi = 1,

α̂+ τ̂ = Ê(Y | Z = 1) otherwise; thus, (2) can

also be written as:

n−1
n∑

i=1

(Ŷzi(1)− Ŷzi(0)). (17)

In the case of a randomized block exper-

iment, where the probability of assignment

to the treatment group depends on known

covariates, assumption (5) will be violated,

but if the covariates are unrelated to the

potential outcomes:

Z‖Yz(0), Yz(1), (18)

in which case (2) is still unbiased and

consistent for ITT.

When the covariates are related to both

treatment assignment and the potential out-

comes, (8) provides the basis for extending

the approach above. Let the covariates X

take on L distinct values, corresponding to

blocks b = 1, . . ., L and let g(X) ≡ B

be the one to one onto function mapping X

onto the blocking variable B. Within each

block b, n1b = nb Pr(Z = 1 | B = b) of the

nb units are assigned to the treatment group,

where 0 < Pr(Z = 1 | B = b) < 1 for all b.

The matched pairs design is the special case

where the sample size is 2n, L = n, n1b = 1,

n0b = nb − n1b = 1.

The regression corresponding to (16) is:

Yi =

L∑

b=1

1{Bi}(b)(αb + τbZi + εi), (19)

where 1{Bi}(b) = 1 if {Bi} = b, 0 other-

wise, and E(ε | X, Z) = 0. Thus, τb is the
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value of ITT(X) in block b, with estimator

τ̂b = Ȳ{Z=1,B=b} − Ȳ{Z=0,B=b}, the difference

between the treatment group and control

group means in this block. The ITT can then

be estimated using the estimated marginal

distribution (or the marginal distribution if it

is known) of the blocking variable:

ÎTT=

L∑

b=1

(Ȳ{Z=1,B=b}−Ȳ{Z=0,B=b})P̂r(B=b).

(20)

Under random sampling from P ,

P̂r(B = b) = nb/n, and (20) = (17); For

the matched pair design, in addition,

(17) = (2).

As above, it is also easy to see that:

Ȳ{Z=1,B=b} − Ȳ{Z=0,B=b} =

(nb)
−1

n∑

i=1

1{Bi}(b)(Ŷzi(1)− Ŷzi(0)), (21)

where the missing outcomes are imputed

using the estimated ‘best’ predictor; thus

the estimator (20) can also be obtained by

imputing missing potential outcomes.

Another approach to estimating the ITT

under (8) is to reweight the treatment

group observations in such a way that the

reweighted data from the treatment group

(control group) would be a random sample

from the distribution of (Yz(1), X) (Yz(0), X))

and then apply the simple estimator (2) to

the weighted data. This is the essence of

‘inverse probability weighting’ (Horvitz and

Thompson, 1952).

To see how this works, suppose that πz(x)

percent of the observations at level x of X

are in the treatment group. Under random

sampling from the distributions (Yz(1), X) and

(Yz(0), X), the treatment and control groups

should have the same distribution on X .

If the treated observations at level x are

weighting by π−1
z (x) and the control group

observations at x by (1− πz(x))
−1 the treated

and controls will have the same distribution

on X in the weighted data set and (2) can be

applied to the weighted data, yielding the IPW

estimator:

∑n
i=1 π−1

z (X i)ZiYi∑n
i=1 π−1

z (X i)Zi

−

∑n
i=1(1− πz(X i))

−1(1− Zi)Yi∑n
i=1(1− πz(X i))

−1(1− Zi)
. (22)

Using YZ = Yz(1)Z , elementary properties

of conditional expectation, and assumption

(8), leads to a more formal justification:

E(π−1
z (X)ZY ) = E(E(π−1

z (X)ZY | X)) =

E(π−1
z (X)E(ZYz(1) | X)) = E(π−1

z (X)E(Z |

X)E(Yz(1) | X)) = E(Yz(1)). Finally, note

that in the randomized block experiment

πz(x) = πz(g(x)) = πz(b) = n1b/nb, and the

estimate (22) is identical to (20) under random

sampling from P .

Estimation of treatment effects in
observational studies

In observational studies in the social and

behavioral sciences, the assumption that

treatment D is unrelated to the potential

outcomes Yd(0) and Yd(1) is unlikely to

hold. Estimation of the treatment effects

ATE(X), ATT(X), ATE and ATT is therefore

considered under the assumption (given

by (11) and (7)) that treatment asignment

is strongly ignorable, given the covariates

X (Rosenbaum and Rubin, 1983). For a

more extensive treatment of estimation under

strongly ignorable treatment assignment, see

the reviews by Imbens (2004) and Schafer and

Kang (2007).

In principle, this case has already been

considered. Nevertheless, new issues arise in

attempting to use the estimators previously

considered. There are serval reasons for this.

First, in a randomized block experiment,

the treatment and control group probabilities

depend on the covariates in a known way,

that is πz(X) is known. Thus, for example,

if inverse probability weighting is used to

estimate the ITT, the weights are known. This

is not the case in an observational study.

Second, in a randomized block experiment (8)

is a byproduct of the study design, whereas
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in observational studies the analogue (10)

is an assumption; this issue was briefly

discussed earlier. In practice, making a

compelling argument that a particular set of

covariates renders (8) true is the most difficult

challenge facing empirical workers who want

to use the methods below to make inferences

about various types of treatment effects.

Third, in a randomized block experiment,

the covariates used in blocking take on (in

principle) relatively few values, and thus

the ITT can be estimated non-parametrically

using the first appproach (as in (20)). In an

observational study,where X is most likely

high dimensional, this is no longer the case.

And finally, it is necessary (though not

difficult) to modify estimators of the ATE(X)

andATE to applywhen it is desired to estimate

ATT(X) and ATT.

Regression estimators use estimates (Ê) of

the regressions E(Yd(1) | X) and E(Yd(0) | X)

to impute missing potential outcomes: if

Di = 1, Ŷdi(1) = Ydi(1), Ŷdi(0) = Ê(Yd(0) |

X = xi), and if Di = 0, Ŷdi(0) = Ydi(0),

Ŷdi(1) = Ê(Yd(1) | X = xi). These are then

used to impute the unit effects and the ATE is

then estimated by averaging over these:

n−1
n∑

i=1

(Ŷdi(1)− Ŷdi(0)). (23)

As ATE(X) = ATT(X), the ATT can be

obtained as above, averaging only over the n1

treated observations.

As a starting point, consider the simplest

(and still most widely used) regression

estimator, where the covariates enter the

response function linearly:

Yi = α + τDi + β ′X i + εi, (24)

where the parameters are identified by the

condition E(ε | X, D) = 0. This leads to the

well-known regression adjusted estimator of

ATE(X):

τ̂= (Ȳ{D=1}−Ȳ{D=0})−β̂
′
(X̄{D=1}−X̄{D=0}),

(25)

where Ȳ{D=1} is the treatment group mean,

Ȳ{D=0} is the control group mean, and X̄1(X̄0)

is the sample mean vector for the covariates

in the treatment (control) group. It is easy to

see that (25) = (23).

There are essentially two problemswith the

estimator τ̂ . First, the investigator typically

does not know the form of the response

function and the linear form is chosen out

of convenience. This form has very strong

implications: τ = ATE(X) = ATE = ATT,

that is, not only are the effects the same at all

levels of X , but theATE is also theATT.When

the regression functions are misspecified,

using τ̂ can yield misleading inferences.

Second, when there are ‘regions’ with little

overlap between covariate values in the

treatment and control groups, imputed values

are then based on extrapolations outside the

range of the data. For example, if the treatment

group members have ‘large’ values of a

covariate X1 and the control group members

have ‘small’ values, the imputations Ŷd(0)

(Ŷd(1)) for treatment (control) groupmembers

will involve extrapolating the control group

(treatment group) regression to large (small)

X1 values. This may produce very misleading

results.

To deal with the first of these difficulties,

a natural alternative is to use nonlinear

regresssion, or in the typical case where the

form of the regression functions is not known,

to estimate these non-parametrically (as in

(19)). Imbens (2004) reviews this approach.

Non-parametric regression can work well if

X is not high dimensional, but when there are

many covariates to control for, as is typical

in observational studies, the precision of the

estimator regression may be quite low. This

problem then spills over to the imputations.

[But see also Hill andMcCulloch (2007), who

propose using Bayesian Additive Regression

Trees to fit the regression functions, finding

that estimates based on this approach are

superior to those obtained using many other

typically employed methods.]

Sub-classification (also called blocking)

is an older method used to estimate causal

effects that is also non-parametric in spirit.

Here, units with ‘similar’ values of X are

grouped into blocks and the ATE is estimated

as in the case of a randomized block
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experiment considered above. To estimate the

ATT, the distribution of the blocking variable

B in the group receiving treatment (rather than

the overall population) is used; equivalently,

the imputed unit effects are averaged over the

treatment group only. In a widely cited paper,

Cochran (1968) shows in a concrete example

with one covariate that subclassification with

five blocks removes 90% of the bias.

Matching is another long-standing method

that has been used which avoids paramet-

rically modeling the regression functions.

Although matching can be used to estimate

the ATE, it has most commonly been used

to estimate the ATT in the situation where

the control group is substantially larger

than the treatment group. In this case, each

unit i = 1, . . . , n1 in the treatment group is

matched to one or more units ‘closest’ in the

control group and the outcome values from

the matched control(s) are used to impute

Ŷdi(0). In the case of ‘one to one’ matching,

unit i is matched to one control with value

Y∗ ≡ Ŷdi(0); if i is matched to more than

one control, the average of the control group

outcomes can be used.

There are many possible matching

schemes. A unit can be matched with one

or more others using various metrics to

measure the distance between covariates X,

and various criteria for when two units have

covariate values close enough to constitute

a ‘match’ can be used. In some schemes,

matches are not reused, but in others are used

again. In some schemes, not all units are

necessarily matched. See Gu and Rosenbaum

(1993) for a nice discussion of the issues

involved in matching. Despite the intuitive

appeal of matching, estimators that match

on X typically have poor large sample

properties (see Abadie and Imbens, 2006, for

details).

The procedures above do not contend

with the frequently encountered problem of

insufficient overlap in the treatment and

control groups. One alternative is to only

consider regions where there is sufficient

overlap, for example, to match only those

treatment units with covariate values that are

‘sufficiently’ close to the values observed in

the control group.When this is done, however,

the quantity estimated is no longer theATE or

ATT because the average is only taken over

the region of common support.

In an important paper, Rosenbaum and

Rubin (1983) addressed the issue of overlap,

proving that when (11) and (12) hold:

Y (0), Y (1)‖D | πd(X), (26)

0 < Pr(D = 1 | πd(X)) < 1, (27)

implying that any of the methods just dis-

cussed may be applied using the ‘propensity

score’πd(X) (which is a many to one function

of X), rather than X; this cannot exacerbate

the potential overlap problem and may help

to lessen this problem. [For generalizations of

the propensity score, applicable to the case

where the treatment is categorical, ordinal or

continuous, see Imai and van Dyk (2004),

Imbens (2000) and Joffe and Rosenbaum

(1999).]

Rosenbaum and Rubin (1983) also discuss

(their corollary 4.3) using the propensity

score to estimate the regression functions

E(Yd(1) | πd(X)) and E(Yd(0) | πd(X))

when these are linear. Typically, the true

form of the regression functions relating

potential outcomes to the propensity score

will be unknown. But these functions can be

estimated non-parametrically more precisely

using πd(X) than X. However, the advantage

of this approach is somewhat illusory, as in

observational studies, πd(X) will be unknown

and must be estimated. Logistic regression is

often used, but this form is typically chosen

for convenience.To the best ofmyknowledge,

the impact of using a misspecified propensity

score in this case has not been studied.

If, however, a non-parametric estimator is

used (for example, a sieve estimator as

described in Imbens, 2004), the so-called

‘curse of dimensionality’ is simply transferred

from estimation of the regression function to

estimation of the propensity score.

A straightforward way to use subclas-

sification on the propensity score is to

divide the unit interval into L equal length

intervals and group the observations by their
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estimated propensity scores. Within interval

I`, ` = 1, . . ., L, the ATE is estimated as:

∑
i∈I`

DiYi∑
i∈I`

Di

−

∑
i∈I`

(1− Di)Yi∑
i∈I`

(1− Di)
. (28)

The ATE is then estimated by averaging

the estimates (28), using weights

∑n
i=1 1Ai

(`)

n
,

where 1Ai (`) = 1 if i ∈ I`, 0 oth-

erwise. To estimate the ATT, the weights

should be modified to reflect the distribution

of the observations receiving treatment:∑n
i=1 1Ai

(`)Di∑n
i=1 Di

. Lunceford and Davidian (2004)

study subclassification on the propensity

score and compare this with IPW estimators

(discussed below). Using simulations, Drake

(1993) compares the bias in the case where

the propensity score is known to the case

where it is estimated, finding no additional

bias is introduced in the latter case. She

also finds that when the model for the

propensity score is misspecified, the bias

incurred is smaller than that incurred by

misspecifying the regression function. This

may be suggestive, but without knowing

how to put the misspecification in the two

different models onto a common ground, it

is difficult to attribute too much meaning to

this finding.

Matching on propensity scores is widely

used in empirical work and has also been

shown to perform well in some situations

(Dehejia and Wahba, 1999). Corollary 4.1 in

Rosenbaum and Rubin (1983) shows theATE

can be estimated by drawing a random sample

πd(X1), . . ., πd(Xn) from the distribution of

πd(X), then randomly choosing a unit from

the treatment group and the control groupwith

this value πd(x), and taking the difference

Y (1)−Y (0), then averaging the n differences.

In practice, of course, the propensity scores

is usually unknown and must be estimated.

[Rosenbaum (1987) explains the seemingly

paradoxical finding that using the estimated

propensity score tends to produce better

balance than using the true propensity score.]

Typically, the ATT is estimated by matching

(using an estimate of the propensity score)

each treated unit i = 1, . . . n1 to one or

more control group units. The control group

outcomes are then used to impute Ŷdi(0)

and the ATT is estimated as in the case of

matching on X.

Because the propensity score is a balancing

score, after matching, the distribution of the

covariates should be similar in the treatment

and control groups. In practice, a researcher

should check this balance and, if there is a

problem, the model for the propensity score

can be refitted (perhaps including interactions

among covariates and/or other higher order

terms) and the balance rechecked. In this

sense, proper specification of the propensity

score model is not really at issue here: the

question is whether the matched sample is

balanced.

Finally, in practice, it is often found that

when the estimated propensity scores are near

0 or 1, the problem of insufficient overlap

in the treatment and control groups may be

lessened, but it is still present. In this case,

the same kinds of issues previously discussed

reappear.

As seen above, the propensity score also

features prominently when methods that use

inverse probability weighting are used to esti-

mate treatment effects. There the covariates

took on L distinct values, each with positive

probability, and the IPW estimator is identical

to the non-parametric regression estimator.

Thiswill no longer be the case. Parallelling the

material above, theATE may be estimated as:

∑n
i=1 π̂−1

d (X i)DiYi∑n
i=1 π̂−1

d (X i)Di

−

∑n
i=1(1− π̂d(X i))

−1(1− Di)Yi∑n
i=1(1− π̂d(X i))

−1(1− Di)
. (29)

To estimate the ATT, it is necessary to weight

the expression above by πd(X), giving

Ȳ{D=1}−∑n
i=1 π̂d(X i)(1− π̂d(X i))

−1(1− Di)Yi∑n
i=1 π̂d(X i)(1− π̂d(Xi))−1(1− Di)

.

(30)

A problem with using these estimators is

that probabilities near 0 and 1 assign large
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weights to relatively few cases (Rosenbaum,

1987). IPW estimators do not require estimat-

ing the regression functions, but the weights

must be estimated consistently in order that

the estimator be consistent. When the model

for the propensity score is misspecifed, the

weights will be estimated incorrectly and

the IPW estimator will not be consistent;

if the estimated probabilities near 0 and 1

are not close to the true probabilities, the

bias can be substantial. To contend with this,

Hirano, Imbens and Ridder (2003) propose

the use of a sieve estimator for the propensity

score, while Shafer and Kang (2007) propose

using a ‘robit’ model (a more robust model

based on the cumulative distribution function

of the t distribution, as opposed to the

normal distribution (probit model) or logistic

distribution (logistic regression).

Strategies for estimating treatment effects

that combine one or more of the methods

have also been proposed. For example, sub-

classification may still leave an imbalance

between the covariates in the treatment

and control groups. To reduce bias, linear

regression of the outcome on D and X in

each block may be used to adjust for the

imbalance, e.g., as in (25) (Rosenbaum and

Rubin, 1983). Matching estimators may be

similarly modified.

Recently, a number of estimators that

combine inverse probability weighting with

regression have been proposed. These estima-

tors have the property that so long as either the

model for the propensity score is correct or the

model for the regression function is correct,

the estimator is consistent. Kang and Schafer

(2007) do a nice job of explaining this idea,

which originates in the sampling literature

(Cassel, Sarndal and Wretman, 1976, 1977),

and of summarizing the literature on this topic.

To give some intuition, consider estimation

of theATE. Suppose the population regression

function is assumed to have the form:

Ydi(1) = g(X i)+ δi, (31)

with E(δi | X i) = 0, giving E(Yd(1) |

X) = g(X). As before, because (11) holds,

the model can be estimated using the treated

observations, and if the population model

is correct and ĝ is consistent, the estimator

n−1
∑n

i=1 ĝ(X i) is consistent for E(Yd(1)).

If the regression function is misspecified,

the errors may not have 0 mean over

P . But if a good estimate of the δi can

be obtained, E(Yd(1)) can be estimated as

n−1
∑n

i=1 ĝ(X i) + n−1
∑n

i=1 δ̂i. To estimate

the δi inP , the propensity score can be used. If

the model for the propensity score is correct,

E(Diπd(X i)δi) = E(δi), and thus the estimator

n−1
n∑

i=1

ĝ(X i)+

n∑

i=1

Diπ̂d(X i)δ̂i (32)

will be consistent for E(Yd(1)).

On the other hand, if the model for the

regression function is correct, then whether

or not the model for the propensity score is

correct, E(Diπd(X i)δi) = EE(Diπd(X i)δi |

X) = E(πd(X i)E(Di | X)E(δi | X) = 0 as

E(δi | X) = 0.

A consistent estimate for E(Yd(0)) can be

constructed in a similar manner. Theweighted

least-squares estimator, with appropriately

chosen weights, is another example; more

generally, the regression function can be

estimated semiparametrically (Robins and

Rotnitsky, 1995). Kang and Schafer (2007)

discuss a number of other estimators that are

consistent so long as either the regression

function or the propensity score is specified

correctly. Such estimators are often called

‘doubly robust’; however, the reader should

note that this terminology is a bit misleading.

Statistical methods that operate well when

the assumptions underlying their usage are

violated are typically called robust. Here, the

estimator is robust with misspecification to

either the propensity score or the regression

function, but not both. In that vein, Kang

and Schafer’s (2007) simulations suggest

that when neither the propensity score nor

the regression function is correctly specified,

doubly robust estimators are often more

biased than estimators without this attractive

theoretical property.
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MEDIATION ANALYSES

Mediation is a difficult topic and a thorough

treatment would require an essay length treat-

ment. The topic arises in several ways. First,

even in randomized experiments, subjects

do not always ‘comply’ with their treatment

assignments.Thus, the treatment receivedD is

an intermediate outcome intervening between

Z and Y , and an investigator might want to

know, in addition to the ITT (which measures

the effect of Z on Y ) the effect of D on Y .

This might be of interest scientifically, and

may also point, if the effect is substantial, but

subjects don’t take up the treatment, to the

need to improve the delivery of the treatment

package. Traditional methods of analysis that

compare subjects by the treatment actually

receivedorwhich compare only those subjects

in the treatment and control groups that

follow the experimental protocol are flawed

because treatment received D is not ignorable

with respect to Y . To handle this, Bloom

(1984) first proposed using Z as an instrument

for D. Subsequently, Angrist, Imbens and

Rubin (1996) clarified the meaning of the

IV estimand. Second, and more generally,

researchers often have theories about the path-

ways (intervening variables) through which a

particular cause (or set of causes) affects the

response variable and the effects of both the

particular cause(causes) and the intervening

variables is of interest. To quantify these

effects, psychologists and others often use

structural equation models, following Baron

and Kenny (1986), for example. However,

the ‘direct effects’ of D on Y and Z on

Y in structural equation models should not

generally be interpreted as effects; conditions

(which are unlikely to be met) when these

parameters can be given a casual interpreta-

tion are also given below, as are conditions

under which the IV estimated admits a causal

interpretation.

Throughout, only the case of a ran-

domized experiment with no covariates is

considered; the results extend immediately

to the case of an observational study where

treatment assignment is ignorable only after

conditioning on the covariates.

The local average treatment effect

As before, let Zi = 1 if unit i is assigned

to the treatment group, 0 otherwise. Let

Dzi(0) (Dzi(1)) denote the treatment i takes

up when assigned to the control (treatment)

group. Similarly, for z = 0, 1 and d = 0, 1,

let Yzdi(0, 0) denote the response when i is

assigned to treatment z = 0 and receives treat-

ment d = 0; Yzdi(0, 1), Yzdi(1, 0), Yzdi(0, 0)

are defined analogously. Let Yzdi(Zi, Dzi(Zi))

denote i’s observed response.

In a randomized experiment, the potential

outcomes are assumed to be independent of

treatment assignment:

Dz(0), Dz(1), Yz(0, Dz(0)), Yz(1, Dz(1))‖Z.

(33)

The two ITTs (hereafter ITTD and ITTY )

are identified as before by virtue of

assumption (5); while these parameters are

clearly of interest (and some would say

these are the only parameters that should be

of interest), neither parameter measures the

effect of D on Y . That is because D is (in

econometric parlance) ‘endogenous’. To deal

with such problems, economists have long

used instrumental variables (including two

stage least squares), in which ‘exogenous’

variables that are believed to affect Y only

throughD are used as an instrument forD. The

IV estimand (in the simple case herein) is:

cov(Z, Y )

cov(Z, D)
=

E(Y | Z = 1)− E(Y | Z = 0)

E(D | Z = 1)− E(D | Z = 0)

= ITTY /ITTD. (34)

Recently, Imbens and Angrist (1994) and

Angrist, Imbens andRubin (1996) clarified the

meaning of the IV estimand (34) and the sense

in which this estimand is a causal parameter.

ITTY is a weighted average over four

compliance types: (1) compliers, with

Dzi(0) = 0, Dzi(1) = 1; (2) never takers, with

Dzi(0) = 0, Dzi(1) = 0; (3) always takers,

with Dzi(0) = 1, Dzi(1) = 1; and (4) defiers,

with Dzi(0) = 1, Dzi(1) = 0, who take up

treatment if not assigned to treatment and

who do not take up treatment if assigned



18 DESIGN AND INFERENCE

to treatment. Often it will be substantively

reasonable to assume there are no defiers;

this is the ‘weak monotonicity assumption’

Dzi(1) ≥ Dzi(0) for all i. Because the never

takers and always takers receive the same

treatment irrespective of their assignment,

any effect of treatment assignment on Y for

these types cannot be due to treatment D.

If it is reasonable to assume the effect of

treatment assignment operates only via the

treatment, i.e., there is no ‘direct effect’ of

Z on Y , then the unit effect of Z on Y for

never takers and always takers is 0; this is

called the exclusion restriction. Under weak

monotonicity and exclusion, ITTY therefore

reduces to:

E(Yz(1, Dz(1))− Yz(0, Dz(0))) =

E(Y (1, 1)− Y (0, 0))× Pr(Dz(0) = 0,

Dz(1) = 1). (35)

As Pr(Dz(0) = 0, Dz(1) = 1) = E(D(1) −

D(0)) in the absence of defiers, provided this

is greater than 0 (weak monotonicity and

this assumption is sometimes called ‘strong

monotonicity’), (34) is the average effect of

Z on Y for the compliers. If the direct effect

of Z on Y for the compliers is also 0, (34) is

also the effect of D on Y in this subpopulation;

this is sometimes called the complier average

causal effect (CACE) or the local average

treatment effect (LATE). [For some further

statistical work on compliance, see Imbens

and Rubin, (1997), Little and Yau (1998),

Jo (2002), Hirano, Imbens, Rubin and Zhou

(2000)].

Because compliance is such an important

issue, empirical researchers have been quick

to apply the results above. But researchers

who want to know theATT orATE might find

the average effect of Z on Y for compliers

or LATE to be of limited interest when the

proportion of compliers is small (e.g., about

15% in the example presented by Angrist

et al. (1996)]. Researchers who estimate

the IV estimand (or who use instrumental

variables or two stage least squares) should

be careful not to forget that compliers may

differ systematically from the never takers

and always takers. However, LATE = ATT

in the not uncommon case where the only

way to obtain the treatment is by being in

the treatment group. In addition, although the

ATT is defined under the assumption that

the exclusion restriction holds, the average

effect of Z on Y for compliers equals the

average effect of Z on Y for the treated

in this case. Finally, in the (unlikely) case

where the treatment effects are constant,

LATE =ATT=ATE.

Empirical workers should also remember

the exclusion restriction is very strong (even

if applied only to the never takers and

always takers), and in a ‘natural’ experiment

or a randomized experiment that is not

double blinded, this restriction may not hold.

Researchers who are in the position of being

able to design a double-blinded, randomized

experiment should do so, and researchers who

are relying on a natural experiment should

think very seriously about whether or not

this restriction is plausible. Finally, it is also

important to remember that the compliers

consitute an unobserved sub-population of P ,

so that even if a policy maker were able to

offer the treatment only to subjects in this

subpopulation, he/she cannot identify these

subjects with certainty.

The approach above also serves as the

basis for the idea of principal stratification

(Frangakis and Rubin, 2002). The essential

idea is that for any intermediate outcome D

(not necessarily binary), causal effects of D

are defined within principal strata (subpop-

ulations with identical values of Dzi(0) and

Dzi(1)).

Mediation and structural equation
modeling

To facilitate comparison with the psycholog-

ical literature, in which structural equation

models are typically used to study mediation

(Baron and Kenny, 1986; MacKinnon and

Dwyer, 1993), I discuss the special casewhere

D andY are continuous,Z andD have additive

effects onY and the average effect ofD onY is

linear (as described below); for amore general

discussion, seeSobel (2008).As above, Imake

assumption (5) and examine the IV estimand;
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the extension to the case where ignorability

holds, conditional on covariates, is immediate.

Using potential outcomes, a linear causal

model analogous to a linear structural equa-

tion model may be constructed:

Dzi(z) = αc
1 + γ c

1 z + εc
1zi(z) (36)

Yzdi(z, d) = αc
2 + γ c

2 z + βc
2d + εc

2zdi(z, d),

(37)

where E(εc
1z(z)) = E(εc

2zd(z, d)) = 0; thus,

γ c
1 = ITTD, γ c

2 = E(Yzd(1, d) − Yzd(0, d))

for any d is the average unmediated effect of

Z on Y , and βc
2 = E(Yzd(z, d+1)−Yzd(z, d))

for z = 0, 1 is the average effect of a one unit

increase in D on Y .

A linear structural equation model for the

relationship between Z , D and Y is given by:

Di = αs
1 + γ s

1Zi + εs
1i (38)

Yi = αs
2 + γ s

2Zi + βs
2Di + εs

2i, (39)

where the parameters are identified by the

assumptions E(εs
1 | Z) = 0 and E(εs

2 |

Z, D) = 0. Thus, the ‘direct effects’ of Z on

D and Y , respectively, are: γ s
1 = E(D | Z =

1) − E(D | Z = 0), γ s
2 = E(Y | Z = 1, D =

d)− E(Y | Z = 0, D = d). The ‘direct effect’

of D on Y is given by βs
2 = E(Y | Z = z,

D = d + 1) − E(Y | Z = 0, D = d). The

‘total effect’ τ s ≡ γ s
2 + γ s

1βs
2.

By virtue of (33) γ s
1 = ITTD and

τ s = ITTY (Holland, 1988). However,

neither γ s
2 nor βs

2 should generally be

given a causal interpretation. To illustrate,

consider E(Y | Z = z, D = d) =

E(Yzd(z, Dz(z)) | Z = z, Dz(z) = d) =

E(Yzd(z, Dz(z)) | Dz(z) = d), where

the last equality follows from (33). This

gives γ s
2 = E(Yzd(1, Dz(1)) | Dz(1) =

d) − E(Yzd(0, Dz(0)) | Dz(0) = d). Because

subjects with Dz(0) = d are not the same

subjects as those with Dz(1) = d, unless the

unit effects of Z on D are 0, γ s
2 is a descriptive

parameter comparing subjects across

different subpopulations. Similar remarks

apply to βs
2.

It is also easy to see from the above that

γ s
2 = γ c

2 if E(Yzd(z, Dz(z)) | Dz(z) = d) =

E(Yzd(z, Dz(z))); a sufficient condition for this

to hold is:

Yz(z, Dz(z))‖Dz(z). (40)

Similarly, βc
2 = βs

2 under this condition.

Results along these lines are reported in

Eggleston, Scharfstein, Munoz and West

(2006), Sobel (2008) and Ten Have, Joffe,

Lynch, Brown and Maisto (2005). Unfortu-

nately, this condition is unlikely to be met

in applications, as it requires the intermediate

outcome D to be ignorable with respect to Y ,

as if D had been randomized.

Holland (1988) showed that if (33)

holds,the exclusion restriction Yzdi(1, d) −

Yzdi(0, d) = 0 for all i holds, ITTD (= 0,

and the other unit effects Dzi(1) − Dzi(0)

and Yzdi(z, d) − Yzdi(z, d′) are constant for

all i, βc
2 is equal to the IV estimand (34).

Unfortunately, the assumption that the effects

are constant is even more implausible in

the kinds of studies typically carried out in

the behavioral and medical sciences than the

assumptions needed to justify using structural

equation models.

Sobel (2008) relaxes the assumption of

constant effects, assuming instead:

E(εc
2zd(1, Dz(1))− εc

2zd(0, Dz(0)) = 0. (41)

Under (41), (33), the exclusion restriction

γ c
2 = 0, and the assumption γ c

1 (= 0, βc
2 =

the IV estimand (34). Further, assumption

(41) is also weaker than the assumption (40)

needed to justify using structural equation

models.

The results above can be extended to the

case where there are multiple instruments and

multiple mediators. The results can also be

extended to the case where compliance is an

intermediate outcome prior to the mediating

variable (Sobel, 2008) to obtain a complier

average effect of the continuous mediator D

on Y ; this is the effect of the continuous

mediator D on Y within the principal stratum

(of the binary outcome denoting whether

or not treatment is taken) composed of the

compliers. Principal stratification itself can

also be used to approach the problem of
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estimating the effect of D on Y (Jo, 2008);

here the idea would be to consider the effects

of D on Y within strata defined by the pair of

values of (Dz(0), Dz(1)).

DISCUSSION

In the last three decades, statisticians have

generated a literature on causal inference that

formally expresses the idea that causal rela-

tionships sustain counterfactual conditional

statements. The potential outcomes notation

allows causal estimands to be defined inde-

pendently of the expected values of estima-

tors. Thus, one can assess and give conditions

(e.g., ignorability) under which estimators

commonly employed actually estimate causal

parameters. Prior to this, researchers esti-

mated descriptive parameters and verbally

argued these were causal based on other

considerations, such as model specification, a

practice that led workers in many disciplines,

e.g., sociology and psychology, to interpret

just about any parameter from a regression or

structural equation model as a causal effect.

While this literature has led most

researchers to a better understanding that a

good study design (especially a randomized

study) leads to more credible estimation of

causal parameters than approaches using

observational studies in conjunction with

many unverifiable substantive assumptions,

it is also important to remember the old

lesson (Campbell and Stanley, 1963) that

randomized studies do not always estimate

parameters that are generalizable to the

desired population. This is especially true for

natural experiments, where the investigator

has no control over the experiment, although

the randomization assumption is plausible.

This literature has also led to clarification

of existing procedures. In the process, new

challenges have been generated. For example,

while this literature reveals that the framework

psychologists have been using for 25 years to

study mediation is seriously flawed, as of yet,

this literature cannot give adequate expression

to and/or indicate how to assess the sub-

stantive theories that investigators have about

the manner in which a treatment package

may work through multiple mediators and the

causal relationships among these mediators.

These and many other issues are in need of

much further work.

REFERENCES

Abadie, A. and Imbens. G. (2006) ‘Large
sample properties of matching estimators for
average treatment effects’, Econometrica, 74:
235–267.

Abadie, A., Angrist, J. and Imbens, G. (2002) ‘Instrumen-
tal variables estimation of quantile treatment effects’,
Econometrica, 70: 91–117.

Angrist, J.D., Imbens, G.W. and Rubin, D.B. (1996)
‘Identification of causal effects using instrumental
variables’, (with discussion) Journal of the American
Statistical Association, 91: 444–472.

Baron A., Rubin M., and Kenny, D.A. (1986) ‘The
moderator–mediator variable distinction in social
psychological research: Conceptual, strategic and
statistical considerations’, Journal of Personality and
Social Psychology, 51: 1173–1182.

Belsen, W.A. (1956) A technique for studying the
effects of a television broadcast’, Applied Statistics,
5: 195–202.

Björklund, A. and Moffit, R. (1987) ‘The estimation
of wage gains and welfare gains in self-selection
models’, The Review of Economics and Statistics,
69: 42–49.

Bloom, H.S. (1984) ‘Accounting for no-shows in
experimental evaluation designs’, Evaluation Review,
8: 225–246.

Bunge, M.A. (1979) Causality and Modern Science (3rd
edn.). New York: Dover.

Campbell, D.T. and Stanley, J.C. (1963) Experimen-
tal and Quasi-experimental Designs for Research.
Chicago: Rand McNally.

Cassel, C.M., Särndal, C.E. and Wretman, J.H. (1976)
‘Some results on generalized difference estimation
and generalized regression estimation for finite
populations’, Biometrika, 63: 615–620.

Cassel, C.M., Särndal, C.E. and Wretman, J.H. (1977)
Foundations of Inference in Survey Sampling.
New York: Wiley.

Cochran, W.G. (1968) ‘The effectiveness of adjustment
by subclassication in removing bias in observational
studies’, Biometrics, 24: 205–213.

Cox, D.R. (1958) The Planning of Experiments.
New York: John Wiley.



CAUSAL INFERENCE IN RANDOMIZED AND NON-RANDOMIZED STUDIES 21

Crepinsek, M.K., Singh, A., Bernstein, L.S., and
McLaughlin, J.E. (2006) ‘Dietary effects of universal-
free school breakfast: findings from the evaluation of
the school breakfast program pilot project’, Journal of
the American Dietetic Association, 106: 1796–1803.

Dehejia, R.H. and Wahba, S. (1999) ‘Causal effects in
nonexperimental studies: reevaluating the evaluation
of training programs’, Journal of the American
Statistical Association, 94: 1053–1062.

Doksum, K. (1974) ‘Empirical probability plots and
statistical inference for nonlinear models in the
two-sample case’, Annals of Statistics, 2: 267–277.

Drake, C. (1993) ‘Effects of misspecication of the
propensity score on estimators of treatment eect’,
Biometrics, 49: 1231–1236.

Eggleston, B., Scharfstein, D., Munoz, B. and West, S.
(2006) ‘Investigation mediation when counterfactu-
als are well-defined: does sunlight exposure mediate
the effect of eye-glasses on cataracts?’. Unpublished
manuscript, Johns Hopkins University.

Finkelstein, M.O., Levin, B. and Robbins, H. (1996)
‘Clinical and prophylactic trials with assured new
treatment for those at greater risk: II. examples’,
American Journal of Public Health, 86: 696–702.

Fisher, R.A. (1925) Statistical Methods for Research
Workers. London: Oliver and Boyd.

Frangakis, C.E. and Rubin, D.B. (2002) ‘Principal
stratication in causal inference’, Biometrics, 58:
21–29.

Gitelman, A.I. (2005) ‘Estimating causal effects from
multilevel group-allocation data’, Journal of Educa-
tional and Behavioral Statistics, 30: 397–412.

Granger, C.W. (1969) ‘Investigating causal relationships
by econometric models and cross-spectral methods’,
Econometrica, 37: 424–438.

Gu, X.S, and Rosenbaum, P.R. (1993) ‘Comparison of
multivariate matching methods: structures, distances
and algorithms’, Journal of Computational and
Graphical Statistics, 2: 405–420.

Halloran, M. E. and Struchiner, C.J. (1995) ‘Causal
inference in infectious diseases’, Epidemiology,
6: 142–151.

Harre, R. and Madden, E.H. (1975) Causal Powers:
A Theory of Natural Necessity. Oxford: Basil
Blackwell.

Hill, J.L. and McCulloch, R.E. (2007) ‘Bayesian nonpara-
metric modeling for causal inference.’ Unpublished
manuscript, Columbia University.

Hirano, K., Imbens, G.W., Rubin, D.B., and X.
Zhou (2000) ‘Assessing the effect of an influenza
vaccine in an encouragement design with covariates,’
Biostatistics, 1: 69–88.

Hirano, Keisuke, Imbens, Guido W., and Ridder, G.
(2003) ‘Efficient estimation of average treatment

effects using the estimated propensity score’,
Econometrica, 71: 1161–1189.

Holland, P.W. (1988) ‘Causal inference, path analysis,
and recursive structural equation models’, (with
discussion) in Clogg, C.C. (ed.), Sociological Method-
ology. Washington, D.C.: American Sociological
Association. pp. 449–493.

Horvitz, D.G., and D.J. Thompson (1952) ‘A gener-
alization of sampling without replacement from a
finite universe’ Journal of the American Statistical
Association, 47: 663–685.

Imai, K. and van Dyk, D.A. (2004) ‘Causal inference
with general treatment regimes: generalizing the
propensity score’, Journal of the American Statistical
Association, 99: 854–866.

Imbens, G.W. (2000) ‘The role of the propensity score
in estimating dose-response functions’, Biometrika,
87: 706–710.

Imbens, G.W. (2004) ‘Nonparametric estimation of
average treatment effects under exogeneity: a
review’, Review of Economics and Statistics, 86:
4–29.

Imbens, G.W., and J.D. Angrist (1994) ‘Identification
and estimation of local average treatment effects’,
Econometrica, 62: 467–475.

Imbens, G.W. and Rubin, D.B. (1997) ‘Estimating
outcome distributions for compliers in instrumental
variables models’, Review of Economic Studies,
64: 555–574.

Jo, B. (2002) ‘Estimation of intervention effects
with noncompliance: Alternative model specifications
(with discussion),’ Journal of Educational and
Behavioral Statistics, 27: 385–415.

Jo, B. (2008) ‘Causal inference in randomized exper-
iments with mediational processes,’ Psychological
Methods, 13: 314–336.

Joffe, M.M. and Rosenbaum P.R. (1999) ‘Propen-
sity scores’, American Journal of Epidemiology,
150: 327–333.

Kang, J.D.Y. and Schafer, J.L. (2007) ‘Demystifying
double robustness: a comparison of alternative
strategies for estimating population means from
incomplete data’, Statistical Science, 22: 523–580.

Lehmann, E.L. (1974) ‘Nonparametris: Statistical
Methods Based on Ranks,’ Holden-Day, Inc.:
San Francisco, CA.

Lewis, D. (1973) ‘Causation’, Journal of Philosophy, 70:
556–567.

Little, R.J, and Yau, L.H.Y. (1998) ‘Statistical techniques
for analyzing data from prevention trials: treatment of
no-shows using Rubin’s causal model’, Psychological
Methods, 3: 147–159.

Lunceford, J.K., and M. Davidian. (2004) ‘Stratication
and weighting via the propensity score in estimation



22 DESIGN AND INFERENCE

of causal treatment effects: a comparative study’,
Statistics in Medicine, 23: 2937–2960.

MacKinnon, D.P. and Dwyer, J.H. (1993) ‘Estimating
mediating effects in prevention studies’, Evaluation
Review, 17: 144–158.

Manski, C.F. (1995) Identication Problems in the
Social Sciences. Cambridge, MA: Harvard University
Press.

Neyman, J. (1923) 1990 ‘On the application of
probability theory to agricultural experiments. essays
on principles. Section 9’, (with discussion) Statistical
Science, 4: 465–480.

Reichenbach, H. (1956) The Direction of Time. Berkeley:
University of California Press.

Robins, J.M. (1989) ‘The analysis of randomized and
nonrandomized aids treatment trials using a new
approach to causal inference in longitudinal studies’,
in Sechrest, L., Freedman, H. and Mulley, A. (eds.),
Health Services Research Methodology: A Focus
on AIDS. Rockville, MD: US Department of Health
and Human Services. pp. 113–159.

Robins, J.M. and Rotnitsky, A. (1995) ‘Semiparametric
efficiency in multivariate regression models with
missing data’, Journal of the American Statistical
Association, 90: 122–129.

Rosenbaum, P.R. (1987) ‘The role of a second control
group in an observational study,’ Statistical Science,
2: 292–316.

Rosenbaum, P.R. (2002) Observational Studies.
New York: Springer-Verlag.

Rosenbaum, P.R. and Rubin, D.B. (1983) ‘The central
role of the propensity score in observational studies
for causal effects’, Biometrika, 70: 41–55.

Rubin, D.B. (1974) ‘Estimating causal effects of treat-
ments in randomized and nonrandomized studies’,
Journal of Educational Psychology, 66: 688–701.

Rubin, D.B. (1977) ‘Assignment to treatment groups
on the basis of a covariate’, Journal of Educational
Statistics, 2: 1–26.

Rubin, D.B. (1978) ‘Bayesian inference for causal effects:
the role of randomization’, The Annals of Statistics,
6: 34–58.

Rubin, D.B. (1980) ‘Comment on “randomization anal-
ysis of experimental data: the Fisher randomization

test” by D. Basu’, Journal of the American Statistical
Association, 75: 591–593.

Schafer, J.L. and Kang, J.D.Y. (2007) ‘Average causal
effects from observational studies: a practical guide
and simulated example’. Unpublished manuscript,
Pennsylvania State University.

Simon, H.A. (1954) ‘Spurious correlation: a causal
interpretation’, Journal of the American Statistical
Association, 49: 467–492.

Sobel, M.E. (1995) ‘Causal inference in the social and
behavioral sciences’, in Arminger, G., Clogg, C.C. and
Sobel, M.E. (eds.), Handbook of Statistical Modeling
for the Social and Behavioral Sciences. New York:
Plenum. pp. 1–38.

Sobel, M.E. (2006a) ‘Spatial concentration and social
stratication: does the clustering of disadvantage
“beget” bad outcomes?’, in Bowles, S., Durlauf, S.N.
and Hoff, K. (eds.), Poverty Traps, New York: Russell
Sage Foundation. pp. 204–229.

Sobel, M.E. (2006b) ‘What do randomized studies of
housing mobility demonstrate? Causal inference in
the face of interference’, Journal of the American
Statistical Association, 101: 1398–1407.

Sobel, M.E. (2008) ‘Identification of causal parameters
in randomized studies with mediating variables,’
Journal of Educational and Behavioral Statistics,
33: 230–251.

Suppes, P. (1970) A Probabilistic Theory of Causality.
Amsterdam: North Holland.

Tenhave, T.R., Joffe, M.M., Lynch, K.G., Brown, G.K.,
Maisto, S. A., and A.T. Beck (2007) ‘Causal mediation
analyses with rank preserving models,’ Biometrics,
63: 926–934.

TenHave, T.R., Marshall, J., Kevin, L., Brown, G. and
Maisto, S. (2005) Causal Mediation Analysis with
Structural Mean Models. University of Pennsylvania
Biostatistics, Working Paper.

Thistlethwaite, D.L. and Campbell, D.T. (1960)
‘Regression-discontinuity analysis: an alternative to
the ex post facto experiment’, Journal of Educational
Psychology, 51: 309–317.

Yule, G.U. (1896) ‘On the correlation of total pauperism
with proportion of out-relief ii: males over 65’,
Economic Journal, 6: 613–623.


