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Experimental Design

Roger E. Kirk

SOME BASIC DESIGN CONCEPTS

Sir Ronald Fisher, the statistician, eugenicist,

evolutionary biologist, geneticist, and father

of modern experimental design, observed

that experiments are ‘only experience care-

fully planned in advance, and designed to

form a secure basis of new knowledge’

(Fisher, 1935: 8). Experiments are charac-

terized by the: (1) manipulation of one

or more independent variables; (2) use

of controls such as randomly assigning

participants or experimental units to one or

more independent variables; and (3) careful

observation or measurement of one or more

dependent variables. The first and second

characteristics—manipulation of an indepen-

dent variable and the use of controls such

as randomization—distinguish experiments

from other research strategies.

The emphasis on experimentation in the

sixteenth and seventeenth centuries as a way

of establishing causal relationships marked

the emergence of modern science from its

roots in natural philosophy (Hacking, 1983).

According to nineteenth-century philoso-

phers, a causal relationship exists: (1) if

the cause precedes the effect; (2) whenever

the cause is present, the effect occurs; and

(3) the cause must be present for the effect

to occur. Carefully designed and executed

experiments continue to be one of science’s

most powerful methods for establishing

causal relationships.

Experimental design

An experimental design is a plan for assigning

experimental units to treatment levels and the

statistical analysis associated with the plan

(Kirk, 1995: 1). The design of an experiment

involves a number of inter-related activities.

1. Formulation of statistical hypotheses that are
germane to the scientific hypothesis. A statistical
hypothesis is a statement about: (a) one or more
parameters of a population or (b) the functional
form of a population. Statistical hypotheses are
rarely identical to scientific hypotheses—they are
testable formulations of scientific hypotheses.

2. Determination of the treatment levels (indepen-
dent variable) to be manipulated, the measure-
ment to be recorded (dependent variable), and
the extraneous conditions (nuisance variables)
that must be controlled.

3. Specification of the number of experimental units
required and the population from which they will
be sampled.

4. Specification of the randomization procedure for
assigning the experimental units to the treatment
levels.
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5. Determination of the statistical analysis that will
be performed (Kirk, 1995: 1–2).

In summary, an experimental design identifies

the independent, dependent, and nuisance

variables and indicates the way in which

the randomization and statistical aspects of

an experiment are to be carried out. The

primary goal of an experimental design is

to establish a causal connection between

the independent and dependent variables.

A secondary goal is to extract the maximum

amount of information with the minimum

expenditure of resources.

Randomization

The seminal ideas for experimental design

can be traced to Sir Ronald Fisher. The

publication of Fisher’s Statistical methods

for research workers in 1925 and The design

of experiments in 1935 gradually led to the

acceptance of what today is considered the

cornerstone of good experimental design:

randomization. Prior to Fisher’s pioneering

work, most researchers used systematic

schemes rather than randomization to assign

participants to the levels of a treatment.

Random assignment has three purposes.

It helps to distribute the idiosyncratic

characteristics of participants over the

treatment levels so that they do not selectively

bias the outcome of the experiment. Also,

random assignment permits the computation

of an unbiased estimate of error effects—those

effects not attributable to the manipulation

of the independent variable—and it helps to

ensure that the error effects are statistically

independent. Through random assignment,

a researcher creates two or more groups of

participants that at the time of assignment are

probabilistically similar on the average.

Quasi-experimental design

Sometimes, for practical or ethical reasons,

participants cannot be randomly assigned to

treatment levels. For example, it would be

unethical to expose people to a disease to

evaluate the efficacy of a treatment. In such

cases it may be possible to find preexisting

or naturally occurring experimental units

who have been exposed to the disease. If

the research has all of the features of an

experiment except random assignment, it is

called a quasi-experiment. Unfortunately, the

interpretation of quasi-experiments is often

ambiguous. In the absence of random assign-

ment, it is difficult to rule out all variables

other than the independent variable as expla-

nations for an observed result. In general, the

difficulty of unambiguously interpreting the

outcome of research varies inversely with

the degree of control that a researcher is able

to exercise over randomization.

Replication and local control

Fisher popularized two other principles of

good experimentation: replication and local

control or blocking. Replication is the obser-

vation of two or more experimental units

under the same conditions. Replication

enables a researcher to estimate error effects

and obtain a more precise estimate of

treatment effects. Blocking, on the other hand,

is an experimental procedure for isolating

variation attributable to a nuisance variable.

Nuisance variables are undesired sources

of variation that can affect the dependent

variable. Three experimental approaches are

used to deal with nuisance variables:

1. Hold the variable constant.
2. Assign experimental units randomly to the

treatment levels so that known and unsuspected
sources of variation among the units are
distributed over the entire experiment and do not
affect just one or a limited number of treatment
levels.

3. Include the nuisance variable as one of the factors
in the experiment.

The latter approach is called local control or

blocking. Many statistical tests can be thought

of as a ratio of error effects and treatment

effects as follows:

Test statistic =

f (error effects) + f (treatment effects)

f (error effects)
(1)
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where f ( ) denotes a function of the effects

in parentheses. Local control, or blocking,

isolates variation attributable to the nuisance

variable so that it does not appear in estimates

of error effects. By removing a nuisance

variable from the numerator and denominator

of the test statistic, a researcher is rewarded

with a more powerful test of a false null

hypothesis.

Analysis of covariance

Asecond general approach can be used to con-

trol nuisance variables. The approach, which

is called analysis of covariance, combines

regression analysis with analysis of variance.

Analysis of covariance involves measuring

one or more concomitant variables in addition

to the dependent variable. The concomitant

variable represents a source of variation that

has not been controlled in the experiment and

one that is believed to affect the dependent

variable. Through analysis of covariance, the

dependent variable is statistically adjusted to

remove the effects of the uncontrolled source

of variation.

The three principles that Fisher vigor-

ously championed—randomization, replica-

tion, and local control—remain the foundation

of good experimental design. Next, I describe

some threats to internal validity in simple

experimental designs.

THREATS TO INTERNAL VALIDITY IN
SIMPLE EXPERIMENTAL DESIGNS

One-group posttest-only design

One of the simplest experimental designs is

the one-group posttest-only design (Shadish,

et al., 2002: 106–107).Adiagram of the design

is shown in Figure 2.1. In the design, a sample

of participants is exposed to a treatment after

which the dependent variable is measured.

I use the terms ‘treatment,’ ‘factor,’ and

‘independent variable’ interchangeably. The

treatment has one level denoted by a1. The

design does not have a control group or a

pretest. Hence, it is necessary to compare the
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Participantn a1 Y n1...........................
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Figure 2.1 Layout for a one-group posttest-
only design. The i = 1, …, n participants
receive the treatment level (Treat. Level)
denoted by a1 after which the dependent
variable (Dep. Var.) denoted by Yi 1 is mea-
sured. The mean of the dependent variable is

denoted by Ȳ .1.

dependent-variable mean, Ȳ .1, with what the

researcher thinks would happen in the absence

of the treatment.

It is difficult to draw unambiguous con-

clusions from the design because of serious

threats to internal validity. Internal validity is

concerned with correctly concluding that an

independent variable is, in fact, responsible

for variation in the dependent variable. One

threat to internal validity is history: events

other than the treatment that occur between

the time the treatment is presented and the time

that the dependent variable is measured. Such

events, called rival hypotheses, become more

plausible the longer the interval between the

treatment and the measurement of the depen-

dent variable. Another threat is maturation.

The dependent variable may reflect processes

unrelated to the treatment that occur simply

as a function of the passage of time: growing

older, stronger, larger, more experienced, and

so on. Selection is another serious threat

to the internal validity of the design. It is

possible that the participants in the experiment

are different from those in the hypothesized

comparison sample. The one-group posttest-

only design should only be used in situations

where the researcher is able to accurately

specify the value of the mean that would be

observed in the absence of the treatment. Such

situations are rare in the behavioral sciences

and education.
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Figure 2.2 Layout for a one-group
pretest-posttest design. The dependent
variable (Dep. Var.) for each of the n blocks
of participants is measured prior to the
presentation of the treatment level, a1, and
again after the treatment level (Treat. Level)
has been presented.The means of the

pretest and posttest are denoted by Ȳ .1
and Ȳ .2, respectively.

One-group pretest-posttest design

The one-group pretest-posttest design shown

in Figure 2.2 also has one treatment level, a1.

However, the dependent variable is measured

before and after the treatment level is

presented. The design enables a researcher to

compute a contrast between means in which

the pretest and posttest means are measured

with the same precision. Each block in the

design can contain one participant who

is observed two times or two participants

who are matched on a relevant variable.

Alternatively, each block can contain identical

twins or participants with similar genetic char-

acteristics. The essential requirement is that

the variable on which participants are matched

is correlated with the dependent variable. The

null and alternative hypotheses are

H0 : µ1 − µ2 = δ0 (2)

H1 : µ1 − µ2 $= δ0, (3)

where δ0 is usually equal to 0. A t statistic for

dependent samples typically is used to test

the null hypothesis.

The design is subject to several of the

same threats to internal validity as the one-

group posttest-only design, namely, history

and maturation. These two threats become

more plausible explanations for an observed

difference between Ȳ .1 and Ȳ .2 the longer

the time interval between the pretest and

posttest. Selection, which is a problem with

the one-group posttest-only design, is not a

problem. However, as I describe next, the use

of a pretest introduces new threats to internal

validity: testing, statistical regression, and

instrumentation.

Testing is a threat to internal validity

because the pretest can result in familiarity

with the testing situation, acquisition of

information that can affect the dependent vari-

able, or sensitization to information or issues

that can affect how the dependent variable

is perceived. A pretest, for example, may

sensitize participants to a topic, and, as a result

of focusing attention on the topic, enhance

the effectiveness of a treatment. The opposite

effect also can occur. A pretest may diminish

participants’ sensitivity to a topic and thereby

reduce the effectiveness of a treatment.

Statistical regression is a threat when the

mean-pretest scores are unusually high or low

and measurement of the dependent variable

is not perfectly reliable. Statistical regression

operates to increase the scores of participants

on the posttest if the mean-pretest score

is unusually low and decrease the scores

of participants if the mean pretest score is

unusually high. The amount of statistical

regression is inversely related to the reliability

of the measuring instrument.

Another threat is instrumentation: changes

in the calibration of measuring instruments

between the pretest and posttest, shifts in

the criteria used by observers or scorers,

or unequal intervals in different ranges of

measuring instruments.

The one-group posttest-only design is most

useful in laboratory settings where the time

interval between the pretest and posttest is

short. The internal validity of the design can be

improved by the addition of a second pretest

as I show next.

One-group double-pretest posttest
design

The plausibility of maturation and statistical

regression as threats to internal validity of
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Figure 2.3 Layout for a one-group
double-pretest-posttest design. The
dependent variable (Dep. Var.) for each of
the n blocks of participants is measured
twice prior to the presentation of the
treatment level (Treat. Level), a1, and again
after the treatment level has been
presented. The means of the pretests are

denoted by Ȳ .1 and Ȳ .2; the mean of the

posttest is denoted by Ȳ .3.

an experiment can be reduced by having two

pretests as shown in Figure 2.3. The time

intervals between the three measurements

of the dependent variable should be the

same. The null and alternative hypotheses are,

respectively,

H0 : µ2 = µ3 (4)

H1 : µ2 $= µ3 (5)

The data are analyzed by means of a ran-

domized block analysis of covariance design

where the difference score, Di = Yi1 – Yi2,

for the two pretests is used as the covariate.

The analysis statistically adjusts the contrast

Ȳ .2 – Ȳ .3 for the threats of maturation and

statistical regression. Unfortunately, the use

of two pretests increases the threat of another

rival hypothesis: testing. History and instru-

mentation also are threats to internal validity.

SIMPLE-EXPERIMENTAL DESIGNS
WITH ONE OR MORE CONTROL
GROUPS

Independent samples t-statistic
design

The inclusion of one or more control groups

in an experiment greatly increases the internal
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Dep. Var., dependent variable; Treat. Level, treatment level.

Figure 2.4 Layout for an independent
samples t -statistic design. Twenty
participants are randomly assigned to
treatment levels a1 and a2 with n1 = n2 = 10
in the respective levels. The means of the

treatment levels are denoted by Ȳ .1 and Ȳ .2,
respectively.

validity of a design. One such design is the

randomization and analysis plan that is used

with a t statistic for independent samples.

The design is appropriate for experiments in

which N participants are randomly assigned

to treatment levels a1 and a2 with n1 and n2

participants in the respective levels.Adiagram

of the design is shown in Figure 2.4.

Consider an experiment to evaluate the

effectiveness of a medication for helping

smokers break the habit. The treatment levels

are a1 = a medication delivered by a patch

that is applied to a smoker’s back and a2 = a

placebo, a patch without the medication. The

dependent variable is a participant’s rating

on a ten-point scale of his or her desire for

a cigarette after six months of treatment.

The null and alternative hypotheses for the

experiment are, respectively,

H0 : µ1 − µ2 = δ0 (6)

H1 : µ1 − µ2 $= δ0 (7)

where µ1 and µ2 denote the means of

the respective populations and δ0 usually
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is equal to 0. A t statistic for independent

samples is used to test the null hypothesis.

Assume that N = 20 smokers are available

to participate in the experiment. The resear-

cher assigns n = 10 smokers to each treatment

level so that each of the (np)!/(n!)p = 184,756

possible assignments has the same probability.

This is accomplished by numbering the

smokers from 1 to 20 and drawing numbers

from a random numbers table. The smokers

corresponding to the first 10 unique numbers

drawn between 1 and 20 are assigned to

treatment level a1; the remaining 10 smokers

are assigned to treatment level a2.

Random assignment is essential for the

internal validity of the experiment. Random

assignment helps to distribute the idiosyn-

cratic characteristics of the participants over

the two treatment levels so that the character-

istics do not selectively bias the outcome of the

experiment. If, for example, a disproportion-

ately large number of very heavy smokers was

assigned to either treatment level, the evalua-

tion of the treatment could be compromised.

Also, it is essential to measure the dependent

variable at the same time and under the same

conditions. If, for example, the dependent

variable is measured in different testing room,

irrelevant events in one of the rooms—

distracting outside noises, poor room air cir-

culation, and so on—become rival hypotheses

for the difference between Ȳ .1 and Ȳ .2.

Dependent samples t-statistic
design

Let us reconsider the cigarette smoking

experiment. It is reasonable to assume that

the difficulty in breaking the smoking habit is

related to the number of cigarettes that a per-

son smokes per day.The design of the smoking

experiment can be improved by isolating this

nuisance variable. The nuisance variable can

be isolated by using the experimental design

for a dependent samples t statistic. Instead of

randomly assigning 20 participants to the two

treatment levels, a researcher can form pairs

of participants who are matched with respect

to the number of cigarettes smoked per day.

A simple way to match the participants is to

Dep. Dep. Treat. Dep.

Var. Var. Level Var.

Block1 a1 Y 11 a2 Y 12

Block2 a1 Y 21 a2 Y 22

Block3 a1 Y 31 a2 Y 32

.

.
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.
.

.

.

.
.
.
.

.

.

.

Block10 a1 Y 10,1 a2 Y 10,2...............................................

Ȳ .1 Ȳ .2

Dep. Var., dependent variable; Treat. Level, treatment level.

Figure 2.5 Layout for a dependent samples
t -statistic design. Each block in the smoking
experiment contains two matched
participants. The participants in each block
are randomly assigned to the treatment
levels. The means of the treatments levels
are denoted by Ȳ .1 and Ȳ .2.

rank them in terms of the number of cigarettes

they smoke. The participants ranked 1 and

2 are assigned to block one, those ranked

3 and 4 are assigned to block two, and so

on. In this example, 10 blocks of matched

participants can be formed. The participants

in each block are then randomly assigned to

treatment level a1 or a2. The layout for the

experiment is shown in Figure 2.5. The null

and alternative hypotheses for the experiment

are, respectively:

H0 : µ1 − µ2 = δ0 (8)

H1 : µ1 − µ2 $= δ0 (9)

where µ1 and µ2 denote the means of the

respective populations; δ0 usually is equal

to 0. If our hunch is correct, that difficulty

in breaking the smoking habit is related to

the number of cigarettes smoked per day,

the t test for the dependent-samples design

should result in a more powerful test of a

false null hypothesis than the t test for the

independent-samples design. The increased

power results from isolating the nuisance

variable of number of cigarettes smoked per

day and thereby obtaining a more precise

estimate of treatment effects and a reduction

in the size of the error effects.

In this example, dependent samples were

obtained by forming pairs of smokers who
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were similar with respect to the number

of cigarettes smoked per day—a nuisance

variable that is positively correlated with the

dependent variable. This procedure is called

participant matching. Dependent samples

also can be obtained by: (1) observing each

participant under all the treatment levels—

that is, obtaining repeated measures on the

participants; (2) using identical twins or

litter mates in which case the participants

have similar genetic characteristics; and

(3) obtaining participants who are matched by

mutual selection, for example, husband and

wife pairs or business partners.

I have described four ways of obtaining

dependent samples. The use of repeated

measures on the participants usually results in

the best within-block homogeneity. However,

if repeated measures are obtained, the effects

of one treatment level should dissipate

before the participant is observed under the

other treatment level. Otherwise the second

observation will reflect the effects of both

treatment levels. There is no such restriction,

of course, if carryover effects such as learning

or fatigue are the principal interest of the

researcher. If blocks are composed of identical

twins or litter mates, it is assumed that the

performance of participants having identical

or similar heredities will be more homoge-

neous than the performance of participants

having dissimilar heredities. If blocks are

composed of participants who are matched by

mutual selection, for example, husband and

wife pairs, a researcher must ascertain that the

participants in a block are in fact more homo-

geneous with respect to the dependent variable

than are unmatched participants. A husband

and wife often have similar interests and

socioeconomic levels; the couple is less likely

to have similar mechanical aptitudes.

Solomon four-group design

The Solomon four-group design enables a

researcher to control all threats to internal

validity as well as some threats to external

validity. External validity is concerned with

the generalizability of research findings to

and across populations of participants and
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Figure 2.6 Layout for a Solomon four-group
design; n participants are randomly assigned
to four groups with n1, n2, n3, and n4
participants in the groups. The pretest is
given at the same time to groups 1 and 2.
The treatment is administered at the same
time to groups 1 and 3. The posttest is given
at the same time to all four groups.

settings. The layout for the Solomon four-

group design is shown in Figure 2.6.

The data from the design can be analyzed

in a variety of ways. For example, the effects

of treatment a1 can be evaluated using a

dependent samples t test of H0: µ1 − µ2 and

independent samples t tests of H0: µ2 − µ4,

H0:µ3−µ5, and H0:µ5−µ6. Unfortunately,

no statistical procedure simultaneously uses

all of the data. A two-treatment, completely

randomized, factorial design that is described

later can be used to evaluate the effects

of the treatment, pretesting, and the testing-

treatment interaction. The latter effect is a

threat to external validity. The layout for the
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Treatment B

b1 b2

No Pretest Pretest

Y 15 Y 12

Y 25 Y 22

a1 Treatment
.
.
.

.

.

.

Y n35 Y n12
.....................................

Ȳ .5 Ȳ .2 Ȳ Treatment

Treatment A Y 16 Y 14

Y 26 Y 24

a2 No Treatment
.
.
.

.

.

.

Y n46 Y n24
.....................................

Ȳ .6 Ȳ .4 Ȳ No Treatment

Ȳ No Pretest Ȳ Pretest

Figure 2.7 Layout for analyzing the Solomon four-group design. Three contrasts can be

tested: effects of treatment A (Ȳ Treatment versus Ȳ No Treatment), effects of treatment B

(Ȳ Pretest versus Ȳ No pretest), and the interaction of treatments A and B (Ȳ .5 + Ȳ .4) versus

(Ȳ .2 + Ȳ .6).

factorial design is shown in Figure 2.7. The

null hypotheses are as follows:

H0 : µTreatment = µNo Treatment (treatment A

population means are equal)

H0 : µPretest = µNo Pretest (treatment B

population means are equal)

H0 : A× B interaction = 0 (treatments A

and B do not interact)

The null hypotheses are tested with the

following F statistics:

F =
MSA

MSWCELL
,F =

MSB

MSWCELL
, and

F =
MSA× B

MSWCELL
(10)

where MSWCELL denotes the within-cell-

mean square.

Insight into the effects of administering a

pretest is obtained by examining the sample

contrasts of Ȳ .2 versus Ȳ .5 and Ȳ .4 versus Ȳ .6.

Similarly, insight into the effects of maturation

and history is obtained by examining the

sample contrasts of Ȳ .1 versus Ȳ .6 and Ȳ .3
versus Ȳ .6.

The inclusion of one or more control groups

in a design helps to ameliorate the threats to

internal validity mentioned earlier. However,

as I describe next, a researcher must still deal

with other threats to internal validity when the

experimental units are people.

THREATS TO INTERNAL VALIDITY
WHEN THE EXPERIMENTAL UNITS
ARE PEOPLE

Demand characteristics

Doing research with people poses special

threats to the internal validity of a design.

Because of space restrictions, I will men-

tion only three threats: demand character-

istics, participant-predisposition effects, and

experimenter-expectancy effects. According

to Orne (1962), demand characteristics result

from cues in the experimental environment

or procedure that lead participants to make

inferences about the purpose of an experiment
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and to respond in accordance with (or in some

cases, contrary to) the perceived purpose.

People are inveterate problem solvers. When

they are told to perform a task, the majority

will try to figure out what is expected

of them and perform accordingly. Demand

characteristics can result from rumors about

an experiment, what participants are told

when they sign up for an experiment,

the laboratory environment, or the com-

munication that occurs during the course

of an experiment. Demand characteristics

influence a participant’s perceptions of what

is appropriate or expected and, hence, their

behavior.

Participant-predisposition effects

Participant-predisposition effects can also

affect the interval validity of an experiment.

Because of past experiences, personality, and

so on, participants come to experiments with a

predisposition to respond in a particular way.

I will mention three kinds of participants.

The first group of participants is mainly

concerned with pleasing the researcher and

being ‘good subjects.’ They try, consciously

or unconsciously, to provide data that support

the researcher’s hypothesis. This participant

predisposition is called the cooperative-

participant effect.

A second group of participants tends to be

uncooperative and may even try to sabotage

the experiment. Masling (1966) has called

this predisposition the ‘screw you effect.’ The

effect is often seen when research participa-

tion is part of a college course requirement.

The predisposition can result from resentment

over being required to participate in an

experiment, from a bad experience in a

previous experiment such as being deceived

or made to feel inadequate, or from a dislike

for the course or the professor associated with

the course. Uncooperative participants may

try, consciously or unconsciously, to provide

data that do not support the researcher’s

hypothesis.

A third group of participants are apprehen-

sive about being evaluated. Participants with

evaluation apprehension (Rosenberg, 1965)

aren’t interested in the experimenter’s hypoth-

esis, much less in sabotaging the experiment.

Instead, their primary concern is in gaining a

positive evaluation from the researcher. The

data they provide are colored by a desire

to appear intelligent, well adjusted, and so

on, and to avoid revealing characteristics

that they consider undesirable. Clearly, these

participant-predisposition effects can affect

the internal validity of an experiment.

Experimenter-expectancy effects

Experimenter-expectancy effects can also

affect the internal validity of an experiment.

Experiments with human participants are

social situations in which one person behaves

under the scrutiny of another. The researcher

requests a behavior and the participant

behaves. The researcher’s overt request may

be accompanied by other more subtle requests

and messages. For example, body language,

tone of voice, and facial expressions can

communicate the researcher’s expectations

and desires concerning the outcome of an

experiment. Such communications can affect

a subject’s performance.

Rosenthal (1963) has documented

numerous examples of how experimenter-

expectancy effects can affect the internal

validity of an experiment. He found that

researchers tend to obtain from their subjects,

whether human or animal, the data they

want or expect to obtain. A researcher’s

expectations and desires also can influence

the way he or she records, analyses, and

interprets data.According to Rosenthal (1969,

1978), observational or recording errors are

usually small and unintentional. However,

when such errors occur, more often than

not they are in the direction of supporting

the researcher’s hypothesis. Sheridan (1976)

reported that researchers are much more

likely to recompute and double-check results

that conflict with their hypotheses than results

that support their hypotheses.

Kirk (1995: 22–24) described a variety of

ways of minimizing these kinds of threats to

internal validity. It is common practice, for

example, to use a single-blind procedure in
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which participants are not informed about the

nature of their treatment and, when feasible,

the purpose of the experiment. A single-blind

procedure helps to minimize the effects of

demand characteristics.

A double-blind procedure, in which neither

the participant nor the researcher knows

which treatment level is administered, is

even more effective. For example, in the

smoking experiment the patch with the

medication and the placebo can be coded so

that those administering the treatment cannot

identify the condition that is administered.

A double-blind procedure helps to minimize

both experimenter-expectancy effects and

demand characteristics. Often, the nature of

the treatment levels is easily identified. In

this case, a partial-blind procedure can be

used in which the researcher does not know

until just before administering the treatment

level which level will be administered. In

this way, experimenter-expectancy effects are

minimized up until the administration of the

treatment level.

The relatively simple designs described so

far provide varying degrees of control of

threats to internal validity. For a description of

other simple designs such as the longitudinal-

overlapping design, time-lag design, time-

series design, and single-subject design, the

reader is referred to Kirk (1995: 12–16). The

designs described next are all analyzed using

the analysis of variance and provide excellent

control of threats to internal validity.

ANALYSIS OF VARIANCE DESIGNS
WITH ONE TREATMENT

Completely randomized design

The simplest analysis of variance (ANOVA)

design (a completely randomized design)

involves randomly assigning participants to a

treatment with two or more levels. The design

shares many of the features of an independent-

samples t-statistic design. Again, consider the

smoking experiment and suppose that the

researcher wants to evaluate the effective-

ness of three treatment levels: medication

delivered by a patch, cognitive-behavioral

therapy, and a patch without medication

( placebo). In this example and those that

follow, a fixed-effects model is assumed, that

is, the experiment contains all of the treatment

levels of interest to the researcher. The null

and alternative hypotheses for the smoking

experiment are, respectively:

H0 : µ1 = µ2 = µ3 (11)

H1 : µj $= µj′ for some j and j′ (12)

Assume that 30 smokers are available to

participate in the experiment. The smokers

are randomly assigned to the three treatment

levels with 10 smokers assigned to each

level. The layout for the experiment is shown

in Figure 2.8. Comparison of the layout

in this figure with that in Figure 2.4 for

an independent samples t-statistic design

reveals that they are the same except that

the completely randomized design has three

treatment levels.

I have identified the null hypothesis that the

researcher wants to test, µ1 = µ2 = µ3, and

described the manner in which the participants

are assigned to the three treatment levels.

Space limitations prevent me from describing

the computational procedures or the assump-

tions associated with the design. For this

information, the reader is referred to the

many excellent books on experimental design

(Anderson, 2001; Dean and Voss, 1999;

Giesbrecht and Gumpertz, 2004; Kirk, 1995;

Maxwell and Delaney, 2004; Ryan, 2007).

The partition of the total sum of squares,

SSTOTAL, and total degrees of freedom,

np− 1, for a completely randomized design

are as follows:

SSTOTAL = SSBG+ SSWG (13)

np− 1 = (p− 1)+ p(n− 1) (14)

where SSBG denotes the between-groups sum

of squares and SSWG denotes the within-

groups sum of squares. The null hypothesis

is tested with the following F statistic:

F =
SSBG/( p− 1)

SSWG/[ p(n− 1)]
=

MSBG

MSWG
(15)
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Treat. Dep.

Level Var.


























Participant1 a1 Y 11

Participant2 a1 Y 21

Group1
.
.
.

.

.

.
.
.
.

Participantn1
a1 Y n11

............................

Ȳ .1


























Participant1 a2 Y 12

Participant2 a2 Y 22

Group2
.
.
.

.

.

.
.
.
.

Participantn2
a2 Y n22

............................

Ȳ .2


























Participant1 a3 Y 13

Participant2 a3 Y 23

Group3
.
.
.

.

.

.
.
.
.

Participantn3
a3 Y n33

............................

Ȳ .3

Dep. Var., dependent variable.

Figure 2.8 Layout for a completely
randomized design with p = 3 treatment
levels (Treat. Level). Thirty participants are
randomly assigned to the treatment levels
with n1 = n2 = n3 = 10. The means of groups

one, two, and three are denoted by, Ȳ .1, Ȳ .2,

and Ȳ .3, respectively

The advantages of a completely randomized

design are: (1) simplicity in the randomization

and statistical analysis; and (2) flexibility with

respect to having an equal or unequal number

of participants in the treatment levels. A

disadvantage is that nuisance variables such as

differences among the participants prior to the

administration of the treatment are controlled

by random assignment. For this control to be

effective, the participants should be relatively

homogeneous or a relatively large number

of participants should be used. The design

described next, a randomized block design,

enables a researcher to isolate and remove

one source of variation among participants

that ordinarily would be included in the error

effects of the F statistic. As a result, the

randomized block design is usually more

powerful than the completely randomized

design.

Randomized block design

The randomized block design can be thought

of as an extension of a dependent samples

t-statistic design for the case in which the

treatment has two or more levels. The layout

for a randomized block design with p = 3

levels of treatment A and n = 10 blocks

is shown in Figure 2.9. Comparison of the

layout in this figure with that in Figure 2.5

for a dependent samples t-statistic design

reveals that they are the same except that the

randomized block design has three treatment

levels.Ablock can contain a single participant

who is observed under all p treatment levels

or p participants who are similar with respect

to a variable that is positively correlated with

the dependent variable. If each block contains

one participant, the order in which the treat-

ment levels are administered is randomized

independently for each block, assuming that

the nature of the treatment and the research

hypothesis permit this. If a block contains

p matched participants, the participants in

each block are randomly assigned to the

treatment levels. The use of repeated measures

or matched participants does not affect the

statistical analysis. However, the alternative

procedures do affect the interpretation of

the results. For example, the results of an

experiment with repeated measures generalize

to a population of participants who have

been exposed to all of the treatment levels.

The results of an experiment with matched

participants generalize to a population of

participants who have been exposed to only

one treatment level. Some writers reserve

the designation randomized block design for

this latter case. They refer to a design

with repeated measurements in which the

order of administration of the treatment

levels is randomized independently for each

participant as a subjects-by-treatments design.

A design with repeated measurements in

which the order of administration of the

treatment levels is the same for all participants

is referred to as a subject-by-trials design.
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Treat. Dep. Treat. Dep. Treat. Dep.

Level Var. Level Var. Level Var.

Block1 a1 Y 11 a2 Y 12 a3 Y 13 Ȳ 1.

Block2 a1 Y 21 a2 Y 22 a3 Y 23 Ȳ 2.

Block3 a1 Y 31 a2 Y 32 a3 Y 33 Ȳ 3.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Block10 a1 Y 10,1 a2 Y 10,2 a3 Y 10,3 Ȳ 10..........................................................................

Ȳ .1 Ȳ .2 Ȳ .3

Dep. Var., dependent variable.

Figure 2.9 Layout for a randomized block design with p = 3 treatment levels (Treat. Level)
and n = 10 blocks. In the smoking experiment, the p participants in each block were randomly

assigned to the treatment levels. The means of treatment A are denoted by Ȳ .1, Ȳ .2, and Ȳ .3;

the means of the blocks are denoted by Ȳ 1., … , Ȳ 10..

I prefer to use the designation randomized

block design for all three cases.

The total sum of squares and total degrees

of freedom are partitioned as follows:

SSTOTAL = SSA+ SSBLOCKS

+ SSRESIDUAL (16)

np− 1 = ( p− 1)+ (n− 1)

+ (n− 1)( p− 1) (17)

where SSA denotes the treatment A sum of

squares and SSBLOCKS denotes the block

sum of squares. The SSRESIDUAL is the

interaction between treatment A and blocks;

it is used to estimate error effects. Two null

hypotheses can be tested:

H0 : µ.1 = µ.2 = µ.3 (treatment A

population means are equal) (18)

H0 : µ1. = µ2. = . . . = µ.15 (block, BL,

population means are equal) (19)

whereµij denotes the population mean for the

ith block and the jth level of treatment A. The

F statistics are:

F =
SSA/( p− 1)

SSRESIDUAL/[(n− 1)( p− 1)]

=
MSA

MSRESIDUAL
(20)

F =
SSBL/(n− 1)

SSRESIDUAL/[(n− 1)( p− 1)]

=
MSBL

MSRESIDUAL
(21)

The test of the block null hypothesis is of

little interest because the blocks represent

a nuisance variable that a researcher wants

to isolate so that it does not appear in the

estimators of the error effects.

The advantages of this design are: (1) sim-

plicity in the statistical analysis; and (2) the

ability to isolate a nuisance variable so as

to obtain greater power to reject a false null

hypothesis. The disadvantages of the design

include: (1) the difficulty of forming homo-

geneous blocks or observing participants p

times when p is large; and (2) the restrictive

assumptions (sphericity and additivity) of the

design. For a description of these assumptions,

see Kirk (1995: 271–282).

Latin square design

The Latin square design is appropriate to

experiments that have one treatment, denoted

by A, with p ≥ 2 levels and two nuisance

variables, denoted by B and C, each with p lev-

els. The design gets its name from an ancient

puzzle that was concerned with the number of

ways that Latin letters can be arranged in a

square matrix so that each letter appears once

in each row and once in each column. A 3× 3

Latin square is shown in Figure 2.10.

The randomized block design enables a

researcher to isolate one nuisance variable:

variation among blocks. A Latin square

design extends this procedure to two nuisance
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c 1 c 2 c 3

b1 a1 a2 a3

b2 a2 a3 a1

b3 a3 a1 a2

Figure 2.10 Three-by-three Latin square,
where aj denotes one of the j = 1, …, p

levels of treatment A, bk denotes one of the
k = 1, …, p levels of nuisance variable B ,
and cl denotes one of the l = 1, … , p levels
of nuisance variable C . Each level of
treatment A appears once in each row and
once in each column as required for a
Latin square.

variables: variation associated with the rows

(B) of the Latin square and variation associ-

ated with the columns of the square (C). As

a result, the Latin square design is generally

more powerful than the randomized block

design. The layout for a Latin square design

with three levels of treatment A is shown

in Figure 2.11 and is based on the ajbkcl

combinations in Figure 2.10. The total sum

of squares and total degrees of freedom are

partitioned as follows:

SSTOTAL = SSA+ SSB+ SSC

+ SSRESIDUAL+ SSWCELL

np2 − 1 = (p− 1)+ (p− 1)+ (p− 1)

+ ( p− 1)( p− 2)+ p2(n− 1)

where SSA denotes the treatment sum of

squares, SSB denotes the row sum of squares,

and SSC denotes the column sum of squares.

SSWCELL denotes the within cell sum of

squares and estimates error effects. Four null

hypotheses can be tested:

H0 : µ1.. = µ2.. = µ3.. (treatment A

population means are equal)

H0 : µ.1. = µ.2. = µ.3. (row, B,

population means are equal)

H0 : µ..1 = µ..2 = µ..3 (column, C,

population means are equal)

H0 : interaction components = 0 (selected

A× B,A× C,B× C, and A× B× C

interaction components equal zero)

Treat. Dep.

Comb. Var.


















Participant1 a1b1c 1 Y 111

Group1

.

.

.
.
.
.

.

.

.

Participantn1
a1b1c 1 Y 111

..............................

Ȳ .111


















Participant1 a1b2c 3 Y 123

Group2

.

.

.
.
.
.

.

.

.

Participantn2
a1b2c 3 Y 123

..............................

Ȳ .123


















Participant1 a1b3c 2 Y 132

Group3

.

.

.
.
.
.

.

.

.

Participantn3
a1b3c 2 Y 132

..............................

Ȳ .132


















Participant1 a2b1c 2 Y 212

Group4

.

.

.
.
.
.

.

.

.

Participantn4
a2b1c 2 Y 212

..............................

Ȳ .212

.

.

.
.
.
.

.

.

.



















Participant1 a3b3c 1 Y 331

Group9

.

.

.
.
.
.

.

.

.

Participantn9
a3b3c 1 Y 331

..............................

Ȳ .331

Dep. Var., dependent variable; Treat. Comb., treatment

combination.

Figure 2.11 Layout for a Latin square
design that is based on the Latin square
in Figure 2.10. Treatment A and the two
nuisance variables, B and C , each have
p = 3 levels.

where µjkl denotes a population mean for the

jth treatment level, kth row, and lth column.

The F statistics are:

F =
SSA/( p− 1)

SSWCELL/[ p2(n− 1)]
=

MSA

MSWCELL

F =
SSB/( p− 1)

SSWCELL/[ p2(n− 1)]
=

MSB

MSWCELL
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F =
SSC/( p− 1)

SSWCELL/[ p2(n− 1)]
=

MSC

MSWCELL

F =
SSRESIDUAL/( p− 1)( p− 2)

SSWCELL/[ p2(n− 1)]

=
MSRESIDUAL

MSWCELL
.

The advantage of the Latin square design

is the ability to isolate two nuisance vari-

ables to obtain greater power to reject a

false null hypothesis. The disadvantages are:

(1) the number of treatment levels, rows, and

columns of the Latin square must be equal,

a balance that may be difficult to achieve;

(2) if there are any interactions among the

treatment levels, rows, and columns, the test

of treatment A is positively biased; and (3) the

randomization is relatively complex.

I have described three simple ANOVA

designs: completely randomized design, ran-

domized block design, and Latin square

design. I call these three designs building-

block designs because all complex ANOVA

designs can be constructed by modifying

or combining these simple designs (Kirk,

2005: 69). Furthermore, the randomization

procedures, data-analysis procedures, and

assumptions for complex ANOVA designs

are extensions of those for the three

building-block designs. The generalized ran-

domized block design that is described next

represents a modification of the randomized

block design.

Generalized randomized block
design

A generalized randomized block design is

a variation of a randomized block design.

Instead of having n blocks of homogeneous

participants, the generalized randomized

block design has w groups of np homogeneous

participants. The z = 1, . . .,w groups, like

the blocks in a randomized block design,

represent a nuisance variable that a researcher

wants to remove from the error effects.

The generalized randomized block design is

appropriate for experiments that have one

treatment with p ≥ 2 treatment levels and

w groups each containing np homogeneous

participants. The total number of participants

in the design is N = npw. The np participants

in each group are randomly assigned to the

p treatment levels with the restriction that

n participants are assigned to each level.

The layout for the design is shown in

Figure 2.12.

In the smoking experiment, suppose that

30 smokers are available to participate.

The 30 smokers are ranked with respect to

the length of time that they have smoked. The

np = (2)(3) = 6 smokers who have smoked

for the shortest length of time are assigned to

group 1, the next six smokers are assigned to

group 2, and so on. The six smokers in each

group are then randomly assigned to the three

treatment levels with the restriction that n = 2

smokers are assigned to each level.

The total sum of squares and total degrees

of freedom are partitioned as follows:

SSTOTAL = SSA+ SSG

+ SSA× G+ SSWCELL

npw− 1 = (p− 1)+ (w− 1)

+ ( p− 1)(w− 1)

+ pw(n− 1)

where SSG denotes the groups sum of

squares and SSA× G denotes the interaction

of treatment A and groups. The within cells

sum of squares, SSWCELL, is used to estimate

error effects. Three null hypotheses can be

tested:

H0 : µ1. = µ2. = µ3. (treatment A

population means are equal)

H0 : µ.1 = µ.2 = · · · = µ.5 (group

population means are equal)

H0 : A× G interaction = 0 (treatment A

and groups do not interact),

where µjz denotes a population mean for the

ith block, jth treatment level, and zth group.

The three null hypotheses are tested using the

following F statistics:

F=
SSA/(p−1)

SSWCELL/[pw(n−1)]
=

MSA

MSWCELL



EXPERIMENTAL DESIGN 37

Treat. Dep. Treat. Dep. Treat. Dep.

Level Var. Level Var. Level Var.
{

1 a1 Y 111 3 a2 Y 321 5 a3 Y 531
Group1

2 a1 Y 211 4 a2 Y 421 6 a3 Y 631

......................... ......................... .........................

Ȳ .11 Ȳ .21 Ȳ .31

{

7 a1 Y 712 9 a2 Y 922 11 a3 Y 11,32
Group2

8 a1 Y 812 10 a2 Y 10,22 12 a3 Y 12,32

......................... ......................... .........................

Ȳ .12 Ȳ .22 Ȳ .32

{

13 a1 Y 13,13 15 a2 Y 15,23 17 a3 Y 17,33
Group3

14 a1 Y 14,13 16 a2 Y 16,23 18 a3 Y 18,33

......................... ......................... .........................

Ȳ .13 Ȳ .23 Ȳ .33

{

19 a1 Y 19,14 21 a2 Y 21,24 23 a3 Y 23,34
Group4

20 a1 Y 20,14 22 a2 Y 22,24 24 a3 Y 24,34

......................... ......................... .........................

Ȳ .14 Ȳ .24 Ȳ .34

{

25 a1 Y 25,15 27 a2 Y 27,25 29 a3 Y 29,35
Group5

26 a1 Y 26,15 28 a2 Y 28,25 30 a3 Y 30,35

......................... ......................... .........................

Ȳ .15 Ȳ .25 Ȳ .35

Dep. Var., dependent variable.

Figure 2.12 Generalized randomized block design with n = 30 participants, p = 3 treatment
levels, and w = 5 groups of np = (2)(3) = 6 homogeneous participants. The six participants in
each group are randomly assigned to the three treatment levels (Treat. Level) with the
restriction that two participants are assigned to each level.

F=
SSG/(w−1)

SSWCELL/[pw(n−1)]
=

MSG

MSWCELL

F=
SSA×G/(p−1)(w−1)

SSWCELL/[pw(n−1)]
=

MSA×G

MSWCELL

The generalized randomized block design

enables a researcher to isolate one nuisance

variable, an advantage that it shares with the

randomized block design. Furthermore, the

design uses the within cell variation in

the pw = 15 cells to estimate error effects

rather than an interaction as in the randomized

block design. Hence, the restrictive sphericity

and additivity assumptions of the randomized

block design are replaced with the assumption

of homogeneity of within cell population

variances.

ANALYSIS OF VARIANCE DESIGNS
WITH TWO OR MORE TREATMENTS

The ANOVA designs described thus far all

have one treatment with p ≥ 2 levels. The

designs described next have two or more

treatments denoted by the letters A, B, C, and

so on. If all of the treatments are completely

crossed, the design is called a factorial design.

Two treatments are completely crossed if each

level of one treatment appears in combination

with each level of the other treatment and

vice se versa. Alternatively, a treatment can

be nested within another treatment. If, for

example, each level of treatment B appears

with only one level of treatment A, treatment

B is nested within treatment A. The distinction
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(a) Factorial design 

a1

b1 b2 b1 b2

a2

(b) Hierarchical design 

b1 b2 b3 b4

a1 a2

Figure 2.13 (a) illustrates crossed treatments. In (b),
treatment B(A) is nested in treatment A.

between crossed and nested treatments is

illustrated in Figure 2.13. The use of crossed

treatments is a distinguishing characteristic

of all factorial designs. The use of at

least one nested treatment in a design is a

distinguishing characteristic of hierarchical

designs.

Completely randomized factorial
design

The simplest factorial design from the

standpoint of randomization procedures and

data analysis is the completely randomized

factorial design with p levels of treatment

A and q levels of treatment B. The design

is constructed by crossing the p levels of

one completely randomized design with the

q levels of a second completely randomized

design. The design has p × q treatment

combinations, a1b1, a1b2, … , apbq.

The layout for a two-treatment completely

randomized factorial design with p = 2

levels of treatment A and q = 2 levels

of treatment B is shown in Figure 2.14. In

this example, 40 participants are randomly

assigned to the 2 × 2 = 4 treatment

combinations with the restriction that n =

10 participants are assigned to each com-

bination. This design enables a researcher

to simultaneously evaluate two treatments,

A and B, and, in addition, the interaction

between the treatments, denoted by A×B. Two

treatments are said to interact if differences in

the dependent variable for the levels of one

treatment are different at two or more levels

of the other treatment.

The total sum of squares and total degrees

of freedom for the design are partitioned

Treat. Dep.

Comb. Var.


















Participant1 a1b1 Y 111

Group1

.

.

.
.
.
.

.

.

.

Participantn1
a1b1 Y n111

Ȳ .11


















Participant1 a1b2 Y 112

Group2

.

.

.
.
.
.

.

.

.

Participantn2
a1b2 Y n212

Ȳ .12


















Participant1 a2b1 Y 121

Group3

.

.

.
.
.
.

.

.

.

Participantn3
a2b1 Y n321

Ȳ .21


















Participant1 a2b2 Y 122

Group4

.

.

.
.
.
.

.

.

.

Participantn4
a2b2 Y n422

Ȳ .22

Dep. Var., dependent variable; Treat. Comb., treatment

combination.

Figure 2.14 Layout for a two-treatment,
completely randomized factorial design
where n = 40 participants were randomly
assigned to four combinations of treatments
A and B , with the restriction that n1 = … =

n4 = 10 participants were assigned to each
combination.

as follows:

SSTOTAL = SSA+ SSB

+ SSA× B+ SSWCELL

npq − 1 = ( p− 1)+ (q − 1)

+ ( p− 1)(q − 1)+ pq(n− 1),
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where SSA × B denotes the interaction sum

of squares for treatments A and B. Three null

hypotheses can be tested:

H0 : µ1. = µ2. = · · · = µp. (treatment A

population means are equal)

H0 : µ.1 = µ.2 = · · · = µ.q (treatment B

population means are equal)

H0 : A× B interaction = 0 (treatments A

and B do not interact),

where µjk denotes a population mean for the

jth level of treatment A and the kth level of

treatment B. The F statistics for testing the

null hypotheses are as follows:

F =
SSA/( p− 1)

SSWCELL/[ pq(n− 1)]
=

MSA

MSWCELL

F =
SSB/(q − 1)

SSWCELL/[ pq(n− 1)]
=

MSB

MSWCELL

F =
SSA× B/( p− 1)(q − 1)

SSWCELL/[ pq(n− 1)]
=

MSA× B

MSWCELL
.

The advantages of a completely random-

ized factorial design are as follows: (1)

All participants are used in simultaneously

evaluating the effects of two or more

treatments. The effects of each treatment are

evaluated with the same precision as if the

entire experiment had been devoted to that

treatment alone. Thus, the design permits

efficient use of resources. (2) A researcher

can determine whether the treatments interact.

The disadvantages of the design are as

follows: (1) If numerous treatments are

included in the experiment, the number

of participants required can be prohibitive.

(2) A factorial design lacks simplicity in

the interpretation of results if interaction

effects are present. Unfortunately, interactions

among variables in the behavioral sciences

and education are common. (3) The use of

a factorial design commits a researcher to

a relatively large experiment. A series of

small experiments permit greater freedom in

pursuiting unanticipated promising lines of

investigation.

Randomized block factorial design

A two-treatment, randomized block factorial

design is constructed by crossing p levels of

one randomized block design with q levels

of a second randomized block design. This

procedure produces p×q treatment combina-

tions: a1b1, a1b2, …, apbq. The design uses the

blocking technique described in connection

with a randomized block design to isolate

variation attributable to a nuisance variable

while simultaneously evaluating two or more

treatments and associated interactions.

A two-treatment, randomized block fac-

torial design has blocks of size pq. If a

block consists of matched participants, n

blocks of pq matched participants must be

formed. The participants in each block are

randomly assigned to the pq treatment com-

binations. Alternatively, if repeated measures

are obtained, each participant is observed

pq times. For this case, the order in which

the treatment combinations is administered

is randomized independently for each block,

assuming that the nature of the treatments and

research hypotheses permit this. The layout

for the design with p = 2 and q = 2 treatment

levels is shown in Figure 2.15.

The total sum of squares and total degrees

of freedom for a randomized block factorial

design are partitioned as follows:

SSTOTAL = SSBL+ SSA + SSB

+ SSA × B+ SSRESIDUAL

npq − 1 = (n− 1)+ (p− 1)+ (q − 1)

+ ( p− 1)(q − 1)+ (n− 1)( pq−1).

Four null hypotheses can be tested:

H0 : µ1.. = µ2.. = . . . = µn.. (block

population means are equal)

H0 : µ.1. = µ.2. = . . . = µ.p. (treatment A

population means are equal)

H0 : µ..1 = µ..2 = . . . = µ..q (treatment B

population means are equal)

H0 : A× B interaction = 0 (treatments A

and B do not interact),

where µijk denotes a population mean for the

ith block, jth level of treatment A, and kth level
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.........................................................................................................
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Dep. Var., dependent variable; Treat. Comb., treatment combination.

Figure 2.15 Layout for a two-treatment, randomized block factorial design where four
matched participants are randomly assigned to the pq = 2 × 2 = 4 treatments combinations
in each block.

of treatment B. The F statistics for testing the

null hypotheses are as follows:

F =
SSBL/(n− 1)

SSRESIDUAL/[(n− 1)( pq − 1)]

=
MSBL

MSRESIDUAL

F =
SSA/( p− 1)

SSRESIDUAL/[(n− 1)( pq − 1)]

=
MSA

MSRESIDUAL

F =
SSB/(q − 1)

SSRESIDUAL/[(n− 1)( pq − 1)]

=
MSB

MSRESIDUAL

F =
SSA× B/( p− 1)(q − 1)

SSRESIDUAL/[(n− 1)( pq − 1)]

=
MSA× B

MSRESIDUAL
.

The design shares the advantages and disad-

vantages of the randomized block design. It

has an additional disadvantage: if treatment A

or B has numerous levels, say four or five,

the block size becomes prohibitively large.

Designs that reduce the size of the blocks are

described next.

ANALYSIS OF VARIANCE DESIGNS
WITH CONFOUNDING

An important advantage of a randomized

block factorial design relative to a comple-

tely randomized factorial design is superior

power. However, if either p or q in a

two-treatment, randomized factorial design

is moderately large, the number of treatment

combinations in each block can be pro-

hibitively large. For example, if p = 3 and q =

4, the design has blocks of size 3× 4 = 12.

Obtaining n blocks with twelve matched

participants or observing n participants on

twelve occasions is generally not feasible. In

the late 1920s, Ronald A. Fisher and Frank

Yates addressed the problem of prohibitively

large block sizes by developing confounding

schemes in which only a portion of the

treatment combinations in an experiment

are assigned to each block (Yates, 1937).

Their work was extended in the 1940s by

David J. Finney (1945, 1946) and Oscar

Kempthorne (1947).

The split-plot factorial design that is

described next achieves a reduction in the

block size by confounding one or more treat-

ments with groups of blocks. Group-treatment

confounding occurs when the effects of, say,

treatment A with p levels are indistinguishable

from the effects of p groups of blocks.

This form of confounding is characteristic

of all split-plot factorial designs. A second

form of confounding, group-interaction con-

founding, also reduces the size of blocks.

This form of confounding is characteristic

of all confounded factorial designs. A third

form of confounding, treatment-interaction

confounding reduces the number of treatment

combinations that must be included in a

design. Treatment-interaction confounding
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is characteristic of all fractional factorial

designs.

Reducing the size of blocks and the number

of treatment combinations that must be

included in a design are attractive. However,

in the design of experiments, researchers do

not get something for nothing. In the case

of a split-plot factorial design, the effects of

the confounded treatment are evaluated with

less precision than in a randomized block

factorial design.

Split-plot factorial design

The split-plot factorial design is appropriate

for experiments with two or more treatments

where the number of treatment combinations

exceeds the desired block size. The term split-

plot comes from agricultural experimentation

where the levels of, say, treatment A are

applied to relatively large plots of land—the

whole plots. The whole plots are then split or

subdivided, and the levels of treatment B are

applied to the subplots within each whole plot.

A two-treatment, split-plot factorial design

is constructed by combining features of two

different building-block designs; a completely

randomized design with p levels and a

randomized block design with q levels. The

layout for a split-plot factorial design with

treatment A as the between-block treatment

and treatment B as the within-blocks treatment

is shown in Figure 2.16.

Comparison of Figure 2.16 for the split-

plot factorial design with Figure 2.15 for

a randomized block factorial design reveals

that the designs contain the same treatment

combinations: a1b1, a1b2, a2b1, and a2b2.

However, the block size in the split-plot facto-

rial design is half as large. The smaller block

size is achieved by confounding two groups of

blocks with treatment A. Consider the sample

means for treatment A in Figure 2.16. The

difference between Ȳ .1. and Ȳ .2. reflects the

difference between the two groups of blocks

as well as the difference between the two

levels of treatment A. To put it another way,

you cannot tell how much of the difference

between Ȳ .1. and Ȳ .2. is attributable to the

difference between Group1 and Group2 and

how much is attributable to the difference

between treatment levels a1 and a2. For this

reason, the groups of blocks and treatment A

are said to be confounded.

The total sum of squares and total degrees

of freedom for a split-plot factorial design are

partitioned as follows:

SSTOTAL=SSA+SSBL(A)+SSB

+SSA×B+SSRESIDUAL

npq−1= (p−1)+p(n−1)+(q−1)

+(p−1)(q−1)+p(n−1)(q−1),

Treat. Dep. Treat. Dep.

Comb. Var. Comb. Var.


























Block1 a1b1 Y 111 a1b1 Y 112

Block2 a1b1 Y 211 a1b2 Y 212

a1 Group1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
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Figure 2.16 Layout for a two-treatment, split-plot factorial design. Treatment A, a
between-blocks treatment, is confounded with groups. Treatment B is a within-blocks
treatment.
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where SSBL(A) denotes the sum of squares

for blocks within treatment A. Three null

hypotheses can be tested:

H0 : µ1. = µ2. = . . . = µp. (treatment A

population means are equal)

H0 : µ.1 = µ.2 = . . . = µ.q (treatment B

population means are equal)

H0 : A× B interaction = 0 (treatments A

and B do not interact),

where µijk denotes the ith block, jth level of

treatment A, and kth level of treatment B. The

F statistics are:

F =
SSA/( p− 1)

SSBL(A)/[ p(n− 1)]
=

MSA

MSBL(A)

F =
SSB/(q − 1)

SSRESIDUAL/[ p(n− 1)(q − 1)]

=
MSB

MSRESIDUAL

F =
SSA× B/( p− 1)(q − 1)

SSRESIDUAL/[ p(n− 1)(q − 1)]

=
MSA× B

MSRESIDUAL

Notice that the split-plot factorial design

uses two error terms: MSBL(A) is used to

test treatment A; a different and usually

much smaller error term, MSRESIDUAL, is

used to test treatment B and the A × B

interaction. The statistic F = MSA/MSBL(A)

is like the F statistic in a completely ran-

domized design. Similarly, the statistic F =

MSB/MSRESIDUAL is like the F statistic for

treatment B in a randomized block design.

Because MSRESIDUAL is generally smaller

than MSBL(A), the power of the tests of

treatment B and the A×B interaction is greater

than that for treatment A. A randomized

block factorial design, on the other hand,

uses MSRESIDUAL to test all three null

hypotheses. As a result, the power of the test

of treatment A, for example, is the same as

that for treatment B. When tests of treatments

A and B and the A×B interaction are of equal

interest, a randomized block factorial design is

a better design choice than a split-plot factorial

design. However, if the larger block size is not

acceptable and a researcher is more interested

in treatment B and the A× B interaction than

in treatment A, a split-plot factorial design is

a good design choice.

Alternatively, if a large block size is

not acceptable and the researcher is pri-

marily interested in treatments A and B, a

confounded-factorial design is a good choice.

This design, which is described next, achieves

a reduction in block size by confounding

groups of blocks with the A×B interaction.As

a result, tests of treatments A and B are more

powerful than the test of the A×B interaction.

Confounded factorial designs

Confounded factorial designs are constructed

from either randomized block designs or

Latin square designs. One of the simplest

completely confounded factorial designs is

constructed from two randomized block

designs. The layout for the design with

p = q = 2 is shown in Figure 2.17. The design

confounds the A × B interaction with groups

of blocks and thereby reduces the block size

to two. The power of the tests of the two

treatments is usually much greater than the

power of the test of the A × B interaction.

Hence, the completely confounded factorial

design is a good design choice if a small block

size is required and the researcher is primarily

interested in tests of treatments A and B.

Fractional factorial design

Confounded factorial designs reduce the

number of treatment combinations that appear

in each block. Fractional-factorial designs use

treatment-interaction confounding to reduce

the number of treatment combinations that

appear in an experiment. For example, the

number of treatment combinations in an

experiment can be reduced to some fraction—
1/

2, 1/

3, 1/

4, 1/

8, 1/

9, and so on—of the

total number of treatment combinations in

an unconfounded factorial design. Unfortu-

nately, a researcher pays a price for using

only a fraction of the treatment combinations:

ambiguity in interpreting the outcome of the

experiment. Each sum of squares has two or
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Figure 2.17 Layout for a two-treatment, randomized block, confounded factorial design.
The A × B interaction is confounded with groups. Treatments A and B are within-blocks
treatments.

more labels called aliases. For example, two

labels for the same sum of squares might be

treatment A and the B× C × D interaction.

You may wonder why anyone would use

such a design—after all, experiments are sup-

posed to help us resolve ambiguity not create

it. Fractional factorial designs are typically

used in exploratory research situations where

a researcher is interested in six-or- more treat-

ments and can perform follow-up experiments

if necessary. The design enables a researcher

to efficiently investigate a large number of

treatments in an initial experiment, with

subsequent experiments designed to focus on

the most promising lines of investigation or

to clarify the interpretation of the original

analysis. The designs are used infrequently in

the behavioral sciences and education.

HIERARCHICAL DESIGNS

The multitreatment designs that I have dis-

cussed up to now all have crossed treatments.

Often researchers in the behavioral sciences

and education design experiments in which

one of more treatments is nested. Treatment

B is nested in treatment A if each level

of treatment B appears with only one level

of treatment A. A hierarchical design has

at least one nested treatment; the remaining

treatments are either nested or crossed.

Hierarchical designs are constructed from

two or more or a combination of completely

randomized and randomized block designs.

For example, a researcher who is interested in

the effects two types of radiation on learning in

rats could assign 30 rats randomly to six cages.

The six cages are then randomly assigned to

the two types of radiation. The cages restrict

the movement of the rats and insure that all rats

in a cage receive the same amount of radiation.

In this example, the cages are nested in the two

types of radiation. The layout for the design is

shown in Figure 2.18.

There is a wide array of hierarchical

designs. For a description of these designs, the

reader is referred to the extensive treatment in

Chapter 11 of Kirk (1995).

ANALYSIS OF COVARIANCE

The discussion so far has focused on designs

that use experimental control to reduce error

variance and minimize the effects of nuisance
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Figure 2.18 Layout for a two-treatment,
completely randomized, hierarchical design
in which q = 10 levels of treatment B(A) are
nested in p = 2 levels of treatment A. Fifty
animals are randomly assigned to ten
combinations of treatments A and B(A) with
the restriction that five animals are assigned
to each treatment combination.

variables. Experimental control can take

different forms such as random assignment of

participants to treatment levels, stratification

of participants into homogeneous blocks, and

refinement of techniques for measuring a

dependent variable. Analysis of covariance

is an alternative approach to reducing error

variance and minimizing the effects of

nuisance variables. The approach combines

regression analysis withANOVAand involves

measuring one or more concomitant vari-

ables, also called covariates, in addition to the

dependent variable. The concomitant variable

represents a source of variation that was not

controlled in the experiment and a source that

is believed to affect the dependent variable.

Analysis of covariance enables a researcher

to: (1) remove that portion of the dependent-

variable error variance that is predictable

from a knowledge of the concomitant variable

thereby increasing power; and (2) adjust the

dependent-variable means so that they are

free of the linear effects attributable to the

concomitant variable thereby reducing bias.

Analysis of covariance is often used in three

kinds of research situations. One situation

involves the use of intact groups with unequal

concomitant-variable means and is common

in educational research. The procedure sta-

tistically equates the intact groups so that

their concomitant-variable means are equal.

Unfortunately, a researcher can never be sure

that the concomitant-variable means that are

adjusted represent the only nuisance variable

or the most important nuisance variable

on which the intact groups differ. Random

assignment is the best safeguard against

unanticipated nuisance variables.

Analysis of covariance also can be used to

adjust the concomitant-variable means when

it becomes apparent that although the partici-

pants were randomly assigned to the treatment

levels, the participants at the beginning of the

experiment were not equivalent on a nuisance

variable. Finally, analysis of covariance can

be used to adjust the concomitant-variable

means for differences in a nuisance variable

that develop during an experiment.

Statistical control and experimental control

are not mutually exclusive approaches to

reducing error variance and minimizing the

effects of nuisance variables. It may be conve-

nient to control some variables by experimen-

tal control and others by statistical control. In

general, experimental control involves fewer

assumptions than statistical control. However,

experimental control requires more informa-

tion about the participants before beginning

an experiment. Once data collection has

begun, it is too late to randomly assign
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participants to treatment levels or to form

blocks of matched participants. The advantage

of statistical control is that it can be used after

data collection has begun. Its disadvantage is

that it involves a number of assumptions such

as a linear relationship between the dependent

variable and the concomitant variable that

may prove untenable.
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