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WHAT MAKES A DIFFERENCE?

At first sight multivariate data analysis (MDA) can appear diverse and

impenetrable. However, it has two striking and reassuring features that

will enable us to make sense of MDA techniques more easily than might be

expected. Multivariate methods can be understood as logical extensions of

simpler techniques, and further, they rely on the same small set of “moves” to

achieve their ends. In the first two chapters we will explore the relatively

simple statistics that later become the building blocks of multivariate tech-

niques. As noted in the preface, the discussion in these chapters will assume

no prior statistical knowledge and will attempt to provide an intuitive rather

than a technical grasp. (For readers who have very little or no prior statistical

knowledge, it would be helpful to review the section on key terms in the pref-

ace before proceeding.) In Chapter 3 we will examine the strategies that lie at

the heart of multivariate techniques. Again, the aim is to make sense of these

strategies in terms of their logic rather than the statistical technicalities that lie

beneath.

In the following sections we approach the chapter title in two different

ways. First we ask how differences can be quantified or, more precisely, how

a single set of differences can be summarized numerically. Then we examine

how the relationship between two sets of differences may be analyzed. To the

extent that a systematic relationship is thereby detected we then have some

evidence that one set of differences may account for the other. We will explore

these two issues of quantifying and accounting for differences twice over: first

in Section 1.1 for data in the form of scores and then much more briefly in
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Section 1.2 for data in the form of categories. Since the main aim in the first

two chapters is to expose the building blocks of MDA and to ground them

firmly, we will make extensive use of small contrived examples. In Part 2,

where we explore multivariate techniques as such, we will turn to examples of

real-world data drawn from a variety of sources.

1.1 ANALYZING DATA IN THE FORM OF SCORES

1.1.1 Univariate Analysis:
Capturing Differences in One Set of Scores

Imagine that we ask five individuals, conveniently named A, B, C, D, and

E, to complete a measure of subjective well-being or happiness in which the

possible score range is between 1 and 5 and a higher score indicates a higher

level of well-being. Even more conveniently, imagine that each of these five

individuals scores differently on the well-being measure. This situation is

shown in Figure 1.1, where the individuals occupy the rungs of a score “lad-

der.” Person A scored 5, person B scored 4, and so on. How can this set of dif-

ferent scores be summarized numerically to indicate just how different these

individuals are from each other? In addressing this question, we are particu-

larly interested in finding so-called summary statistics that are elegantly

simple and that have the potential to be used as building blocks in more

complex situations.

Even with only five cases, wondering about how to summarize all of their

pairwise differences is hardly a simple beginning and in fact leads nowhere

very helpful. Instead we begin by focusing on how much each person’s score

differs from a fixed reference point. For the purpose of developing building

blocks, it turns out that the arithmetic mean is a particularly helpful reference

point. The arithmetic mean is just the sum of all scores divided by the number

of scores. Here the mean is 15/5 = 3, a number that identifies the midpoint

of the scores in a way we will discuss later. So now we can re-express each

person’s score as the amount by which they “deviate” from the mean of 3.

These deviation scores are shown to the right of the ladder and indicate that

person A and person E are the most deviant, scoring 2 above and below the

mean, respectively. Person C is totally nondeviant, but notice that often in

practice there are no individual scores at the mean, which in fact may not be a

possible score at all if it is not a whole number. As we make use of summary
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statistics such as the mean we leave the cases behind and shift to a different

aggregate level of description. This issue of multiple levels of analysis is an

important one that we will consider further at the end of Chapter 3.

So far we have simply replaced the five original scores with five deviation

scores and so have yet to summarize differences in any way. Calculating the

mean suggested that adding up scores is a useful summarizing strategy; five

scores were replaced by one statistic that captured the middle of these data in

one sense. Just in what sense becomes clear when we try the adding strategy

with deviation scores and find that they will always sum to zero. This is

because the mean has the interesting property that the deviations above and

below it will always cancel out exactly. It is the fulcrum around which the

scores will always balance. What to do after such a promising start? As usual

we choose the option that has the most potential for acquiring useful building

blocks. In the present situation the trick is to sum, not the deviation scores,

but the squared deviation scores. Whether a number is positive or negative,

multiplying it by itself results in a positive number, so the problematic cancel-

ing out of positive and negative deviations disappears. For the numbers in

Figure 1.1, the sum of the squared deviation scores is 4 + 1 + 0 + 1 + 4 = 10.

This statistic is known as the sum of squares (shorthand for the sum of

squared deviations around the mean) and is a true cornerstone of multivariate

data analysis, as we will see.

The sum of squares captures the total amount of differences or variability

in the data, but how might we summarize the average amount of difference?

As with the mean, we can simply divide the total by the number of data points,

that is, 10/5 = 2. This average sum of squares is known as the variance, another

cornerstone of statistical data analysis. Calculating it in this straightforward

What Makes a Difference? 5

Well-Being Score Deviation Score

5 A +2

4 B +1

3 C 0

2 D −1

1 E −2

Figure 1.1 Well-Being Scores for 5 Individuals (A–E) 
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way is appropriate in some circumstances, but with a slight adjustment we can

arrive at a form of the variance that will serve many more purposes in more

complex analyses. The adjustment involves dividing the sum of squares, not

by the number of data points (5 in this case), but by the number of points that

are free to take on any value. This adjusted divisor is known as the degrees of
freedom, a notion we will encounter repeatedly but one we will not need to

understand in detail. In the present case the degrees of freedom are 5 − 1 = 4.

This is because, once we have fixed the value of the mean in our calculations,

the final data point is constrained to take on the value that will result in this

outcome. All of the other four scores can take on any value in the range

allowed by the measure, but the fifth score has no such freedom. This no doubt

sounds rather mysterious, and in fact the concept of degrees of freedom really

only begins to take hold when we treat cases as a sample drawn from a popu-

lation—a major topic in Chapter 2. For now, the key point to note is that the

variance is a fundamental measure of average difference or variability, and it

always comprises a sum of squares divided by a degrees of freedom, in this

case, the number of data points minus 1. The variance for the example data is

therefore 10/4 = 2.5.

In the variance we have a useful number that summarizes the average

amount of differences in a set of scores. One of its limitations, though, is that

by squaring scores we have moved away from the original scale. The original

scores are on the 1–5 well-being scale, but the variance is in squared well-

being units—a surreal and not very helpful scale. To remove this dislocation,

we can simply “unsquare” or take the square root of the variance to produce a

statistic called the standard deviation. For the present data, the square root of

2.5 is approximately 1.58. So if we want to summarize the scores in Figure 1.1

succinctly, we can simply note that there are five scores with a mean of 3 and

a standard deviation of 1.58. A particular variance or standard deviation con-

veys useful information, but they really come into their own when used as

building blocks. Before we start to build, it will be helpful to get a feeling for

the features of data that influence the values of the mean, variance, and stan-

dard deviation. To do this, we turn to the three sets of data shown in Figure 1.2.

We have now extended our imaginary alphabetic sample to 10 individuals

(A–J) and obtained their scores on three different measures, each of which has

a possible score range of 1–5. The left-hand ladder contains their scores on a

well-being measure, the middle ladder shows their scores on a measure of

positive emotions (referred to as positive affect), and the right-hand ladder
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contains their scores on a measure of satisfaction with life. The data are again

depicted by placing individuals on the ladder rung corresponding to their

score. The mean, variance, and standard deviation (SD), and another statistic

called the median, appear beneath each ladder.

The well-being scores on the left-hand ladder have a mean of 3, a variance

of 1.33, and a standard deviation of 1.16. Now that we have more individuals

we can start to reflect on how they are distributed on the ladder, that is, the fre-

quency distribution of their scores. The shape of the left-hand configuration is

referred to as a normal distribution, meaning that most individuals appear in

the middle of the distribution with decreasing frequencies for the higher and

lower values. A further key feature of normality is that the distribution is sym-

metrical about its center, that is, the lower rungs are a mirror image of the

upper rungs. The closer a distribution is to normal, the more helpful are the

mean, variance, and standard deviation as indicators of the middle and spread

of the distribution.

The distribution on the middle ladder of positive affect scores suggests

that we have happened upon a group of people who are not very joyful. Their

What Makes a Difference? 7

Positive Life
Well-Being Affect Satisfaction

5 A 5 A 5 AB

4 BC 4 B 4 CDE

3 DEFG 3 CDE 3

2 HI 2 FGHIJ 2 FGH

1 J 1 1 IJ

Mean 3.00 2.80 3.00
Variance 1.33 1.07 2.44
SD 1.16 1.03 1.56
Median 3.00 2.50 3.00

Figure 1.2 Three Sets of Scores for 10 Individuals (A–J)
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scores have a mean of 2.8, a variance of 1.07, and a standard deviation of

1.03, all lower than those for the left-hand distribution. So, as we can see, com-

pared with the left-hand distribution, the center has dropped down the ladder

a little, and the individuals show fewer differences as they cluster more tightly

on rungs 2 and 3. (Note that comparing means, variances, and standard devia-

tions across distributions in this way can be done only if the two sets of scores

are measured in the same units since all three statistics are “scale bound.”)

Whatever else we might say about the middle distribution, it is clearly non-

normal. Most individuals appear at the lower end of the ladder and the distri-

bution is obviously not symmetric about its center. This asymmetry is referred

to as a skewed distribution, more precisely a positively skewed distribution,

because the scores “tail off” at the high or positive end of the scale. Were the

tail pointing in the opposite direction, the distribution would be negatively

skewed. Sometimes the asymmetry is due less to a continuous tail than to a

few individuals whose extreme scores locate them well away from the crowd.

Such scores are called outliers, which can influence the variance and standard

deviation in a powerful way because of the magnifying effect of squaring devi-

ation scores.

Whether the nonnormality of a distribution is due to a skewed tail or to

outliers, both have a magnetic effect on the mean, dragging it away from the

center of the data and rolling on to influence the values of the variance and

standard deviation. The distorting effect on the mean can be seen if we com-

pare the means for the left-hand and middle distributions with their corre-

sponding medians. The median is the score that splits a sample in two, with

half of the individuals above and half below. Unlike the mean, the median does

not make use of the score values as such and so cannot be influenced by out-

liers or skewness. For the left-hand distribution, the mean and median are both

3, indicating no distortion. But in the middle distribution the mean of 2.8 has

been dragged above the median of 2.5 because of the positive skew. In this

constructed example the degree of skewness and its effect on the mean are not

great, but in practice skewness and outliers can cause major distortions that

then ripple through any analyses that have the mean at their heart.

Turning finally to the right-hand ladder of satisfaction scores, we see

that the mean is 3 (as is the median), the variance is 2.44, and the standard

deviation is 1.56. These figures are reassuring in that the mean clearly sits in

the center of the distribution, and the variance and standard deviation show

that individual differences are more pronounced than in either of the other two
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distributions. However, these numbers are not to be trusted because they hide

a crucial aspect of the data. The distribution is symmetrical, but it is not nor-

mal because it does not have one center but two. Put more technically, the dis-

tribution has more than one mode or peak; it is bimodal with peaks for the 2

and 4 score values. In practical terms this may be signaling measurement prob-

lems in the midrange or the presence of two subsamples. But for now the more

important statistical point is that the mean, variance, and standard deviation

are not designed to work with distributions where there are multiple modes or

peaks. So, in summary, these statistics are most effective when they are applied

to a normal frequency distribution, that is, one that is symmetrical about a sin-

gle peak. In Figure 1.2 the normality of the left-hand distribution makes it a

good candidate for these summary statistics, the skew in the middle one threat-

ens some distortion, and the bimodality in the right-hand distribution under-

mines the use of the statistics completely.

Before we start to build with the blocks of the mean, sum of squares, vari-

ance, and standard deviation, two concluding comments are in order—a caveat

and another way of thinking about these statistics to pave the way for things to

come. It is important to appreciate that these summary statistics can be calcu-

lated and interpreted in a meaningful way only if the scores are measured on

at least an interval scale. In other words, as we noted in the preface, the scale

values must be mutually exclusive, in rank order, and equally spaced. Clearly,

if the distance between, say, scores of 1 and 2 were not the same as that

between scores of 4 and 5, then the arithmetic operations we have conducted

would unravel. In terms of the ladder image, the rungs have not only to be

fixed, but also to be fixed with equal spaces between them. We will return to

this and other measurement issues in Chapter 2.

We can begin to open up another perspective on these statistics by raising

the following question: If we had access to summary statistics but not the indi-

vidual scores for a group of people, what would be our best guess for any given

individual’s score? One answer to this question is to always choose the mean

score for the group. To understand why, we need to rethink the distance

between any individual’s score and the mean as the amount by which our mean-

inspired guess has failed. Viewed in this way, the sum of squares is the total

amount by which the mean “misses” individual scores. If everybody scored at

the mean, there would be no misses, but obviously this is exceedingly rare. A

key property of the mean is that if it is used as the reference point in calculat-

ing individual differences, it will produce a smaller sum of squares than will

What Makes a Difference? 9
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any other reference point such as the median. So the mean is a best guess of

individual scores because it minimizes the miss rate, as long as we think of

misses in terms of squared distances from the mean. Details aside, the key gen-

eral idea to note for now is that guesses or predictions about individual scores

based on averages almost always fail to some extent. The extent of this failure

can be quantified using the sum of squares, variance, and standard deviation. So

these statistics can be used as indicators not only of individual differences, but

also of error.

1.1.2 Bivariate Analysis: Accounting
for Score Differences With Categories

We have explored only a few building blocks so far, but already we can

start to put them to work in interesting ways. Returning to the 10 individuals

shown in the left-hand ladder in Figure 1.2 and reproduced on the left-hand

side of Figure 1.3, we can speculate about what factors might account for

differences in well-being and now actually undertake an analysis to evaluate

the speculation. There is some evidence that women are likely to experience

higher levels of well-being than men (Wood, Rhodes & Whelan, 1989). Is this

difference evident in the data shown in Figure 1.3? Now we are treating well-

being as a dependent variable and gender as an independent variable. Gender

is a categorical variable in that it simply assigns individuals to unordered cat-

egories, two in this case. We can analyze the relationship between a dependent

variable consisting of scores and an independent variable consisting of cate-

gories, using simple extensions of the statistics we now have at our disposal.

Figure 1.3 shows the well-being scores for the 10 individuals split into

two groups: 5 women on the middle ladder and 5 men on the right-hand ladder.

Underneath the ladders are the means, sums of squares (SS), variances (Var),

and standard deviations (SD) for each grouping.

The similar variances and standard deviations indicate that there is a very

similar amount of individual differences or variability within each of the three

groupings. Note that the amount of variability in the women and men sub-

groups is identical because the two distributions happen to be mirror images

of each other. But the question we really want answered is whether men and

women differ in well-being as groups, not as individuals. The answer to this

clearly lies in the difference in their mean scores: 3.4 − 2.6 = .8. This difference

suggests that at least in this sample of 10 people, women report higher levels
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of well-being on average. This is a clear outcome, but how might we extend

our simple statistics to dig deeper and open up analytic possibilities for more

complex and realistic situations in the future?

The key point to note first is that we now have analyses going on at two

levels: the level of individual differences and the level of group differences.

Put another way, we are now quantifying within-group and between-group
differences. The next step is to ask how we might combine these two sorts of

information in helpful ways. It would be particularly helpful to be able to com-

pare them and to ask whether the gender difference in well-being is greater

than we would expect on the basis that individuals differ from each other any-

way. In other words, is the between-group difference more than we would

expect simply from within-group differences? We could explore this question

at this point by considering techniques that focus only on a difference between

two groups. But, as usual, we want to develop strategies that can subsequently

be extended into more complex situations such as those involving more than

two groups and multiple independent and dependent variables. Accordingly,

we now introduce a technique called the analysis of variance (ANOVA),
which appears in many forms throughout the realms of data analysis.

What Makes a Difference? 11

All Individuals Women Men

5 A 5 A 5

4 BC 4 B 4 C

3 DEFG 3 DE 3 FG

2 HI 2 H 2 I

1 J 1 1 J

Mean 3.00 3.40 2.60
SS 12.00 5.20 5.20
Var 1.33 1.30 1.30
SD 1.16 1.14 1.14

Figure 1.3 Well-Being Scores for 5 Women and 5 Men
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Earlier we found that a helpful way to capture individual differences was to

begin with the notion of deviations from the mean and then develop this into the

sum of squares and variance statistics. We can use exactly the same approach to

capture differences between groups. Instead of focusing on mean differences as

such, we calculate how far each mean deviates from the mean of the means, that

is, the mean for the whole group. Looking back at the means in Figure 1.3, we

see that the women’s mean is .4 above the mean for the whole group and the

men’s mean is .4 below it. If we square each of these and sum the results, we

arrive at a sum of squares that captures how different the means are. However,

later we will want to compare these between-group differences with within-

group differences. At the moment the two would not be comparable because one

uses groups as the unit of analysis and the other uses individuals. The obvious

way out of this is to convert the group calculations back to the individual level

by multiplying each squared deviation score for a group by the number of cases

in that group. So, the between-groups sum of squares would be calculated as

5( + .42) + 5( − .42) = 1.6. This number translates the mean difference into a more

flexible statistic that can be subsequently compared with individual level differ-

ences and applied to any number of means. As in the case of the sum of squares

for scores, we can convert the between-groups sum of squares into a between-
groups variance. We do this as before by dividing it by the appropriate degrees

of freedom: the number of data points minus 1. Since the between-groups sum

of squares is based on two means, the between-groups degrees of freedom is

2 − 1 = 1. So the between-groups variance is 1.6/1 = 1.6.

Soon we will pull all of these elements together into a coherent and hope-

fully satisfying pattern, but there is one more step before we do. We have dis-

cussed how to quantify individual differences for the group as a whole and the

mean difference between the subgroups of women and men using appropri-

ate sums of squares and variances. What about the differences within the sub-

groups of women and men? The subgroup sums of squares are shown under

the respective ladders in Figure 1.3. These can simply be added together or

pooled to produce the within-groups sum of squares: 5.2 + 5.2 = 10.4. As

usual, this can be converted into a within-groups variance by dividing by the

appropriate degrees of freedom. Each group has 5 – 1 degrees of freedom, and

these are again pooled to produce the within-groups degrees of freedom of

4 + 4 = 8. So the within-groups variance is 10.4/8 = 1.3.

This completes all of the calculations we need to provide a comprehensive

summary of the differences shown in Figure 1.3. The results of an analysis of
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variance, however simple or complex, are conventionally shown in a summary

table like that in Table 1.1. This simply arranges the statistics we have calcu-

lated in a convenient pattern and so contains no new numbers.

Before we review the numbers and make use of them, a few comments

on alternative terminology in this sort of summary table will be helpful. It is

common for the first column to be headed “source of variability.” “Source of

differences” is used here instead to keep the discussion consistent, although

the terms are logically equivalent. The label “within-groups” is sometimes

replaced by “error,” which should at least resonate with the earlier comment

on variability as an indicator of failure to predict. Finally, variances in this

context are usually referred to as “mean squares.” This is a more informative

label since it refers to the mean sum of squares, but again the “variance”

label has been kept for consistency and to minimize confusion. So encoun-

tering expressions such as “error mean square” should not be a cause for

confusion but an occasion for translation into the more familiar “within-

groups variance.”

The three rows in the summary table highlight the fact that we have ana-

lyzed the well-being differences in three different ways. In the bottom row we

find the statistics that index differences in all of the cases: the total picture.

This total has been split into differences that can be accounted for by being in

the men’s or women’s groups: the between-group differences and the within-

group differences, which are just individual differences. Notice that in the case

of sums of squares and degrees of freedom, this split is additive, that is, the

between- and within-group numbers literally add up to the total. Sometimes

this is referred to as “partitioning” or dividing up the total variability into

its components. This additive property will turn out to be especially valuable

when we later try to make sense of complex sets of differences. Notice also

that variances are not additive, which is why there is no variance entry in the

“total” row. As we saw in Figure 1.3, the total variance for the whole group is

What Makes a Difference? 13

Table 1.1 ANOVA Summary Table Showing the Relationship Between Gender
and Well-Being

Source of Differences Sum of Squares Degrees of Freedom Variance

Between groups 1.60 1 1.60
Within groups 10.40 8 1.30

Total 12.00 9
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1.33, but this is not the sum of the between- and within-group variances, and

so to include it in the summary table could be misleading.

Having taken the trouble to calculate these statistics, how might we use

them to shed further light on the question of whether and how men and

women differ in their well-being scores? Earlier it was suggested that we might

compare the between- and within-group variances to see if the former was suf-

ficient to “rise above” the latter. This can be done by dividing the between-

groups variance by the within-groups variance to produce a statistic called the

F ratio. In the present case this would be 1.6/1.3 = 1.23. The more this rises

above 1, the more evidence we have that between-group differences are pre-

sent. However, it cannot be interpreted as a direct measure of the amount of

group difference, which is still best captured by the actual mean difference or

some derivative of it. The F ratio is indicative of between-group differences,

but we will postpone consideration of its more legitimate uses until Chapter 2.

This is also why it has been omitted from the summary table, where it is usually

shown in another column on the right-hand side.

We can combine elements from the summary table to produce statistics

that summarize individual differences. One of these is called eta2, which is

found by dividing the between-groups sum of squares by the total sum of

squares: 1.6/12 = .133. When this is multiplied by 100, it can be interpreted as

the percentage of total variability accounted for by the categorical variable. So,

in the present case we conclude that gender accounts for 13.3% of the vari-

ability or individual differences in well-being scores in this sample of people.

Alternatively, we could describe the situation in terms of unexplained vari-

ability by computing a statistic called Wilks’s lambda, which is the ratio of

the within-groups and total sums of squares. This is 10.4/12 = .867 and indi-

cates that gender fails to explain 86.7% of the variability or individual differ-

ences in well-being scores. Clearly, eta2 and Wilks’s lambda are mirror images

of each other and by definition their values always add up to 1 or 100 in per-

centage terms. Notice again that both of these statistics reflect individual dif-

ferences. Only mean differences, or some statistic derived directly from them,

convey what is happening at the group level.

This completes our introduction to some simple statistics that allow us to

examine whether category differences can account for a set of score differ-

ences. By now you should already have some sense of how much analytic

work can be done with a few simple building blocks. In Chapter 6 we will

extend these ideas to much more complex situations where we encounter
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so-called multivariate analysis of variance. Before that, Chapter 5 will

introduce another multivariate technique called discriminant analysis, which

is essentially another approach to multivariate analysis of variance that reverses

the status of independent and dependent variables. So there we will be explor-

ing how to account for category differences with scores and appreciating

that many statistics are blind to the independent and dependent status that

researchers choose for their variables. Notice, for example, how in the data we

have been considering the statistics allow us to say either that gender accounts

for 13.3% of the variability in well-being or that well-being accounts for

13.3% of the variability in gender. Alternatively again, we could accurately say

that gender and well-being share 13.3% of their variability. The independent

and dependent status of the variables comes from the research context, not

from the statistics.

1.1.3 Bivariate Analysis: Accounting
for Score Differences With Scores

In the previous section we conducted a simple analysis of variance to

explore how far gender might account for differences in well-being. Now we

return to the data on positive affect shown in Figure 1.2 and ask to what extent

differences in well-being might be accounted for by differences in positive

affect. We will continue to assume that positive affect was measured on an

interval scale, and so now both independent and dependent variables are in the

form of scores. To analyze whether score differences on a dependent variable

can be accounted for by scores on an independent variable, we turn to a tech-

nique called simple regression. Since analysis of variance is a special case of

regression, we can introduce the latter with very few new ideas or tools.

To build an initial bridge between analysis of variance and regression, it

will be helpful to reconfigure and redescribe part of Figure 1.3. Figure 1.4

again shows the distribution of well-being scores for women and men sepa-

rately. The distribution for the whole group has been removed, as have all of

the ladder frames. The means for the women and men are shown as circles

joined by a solid line. The mean for the whole group is shown as a dotted hor-

izontal line. So nothing has changed from Figure 1.3 other than the depiction,

which is now referred to as a bivariate scatter plot as it summarizes the rela-

tionship between two variables. As we saw earlier, at the group level the rela-

tionship can be described as the difference between the two means. These

What Makes a Difference? 15
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group means are also referred to as conditional means because their value on

the dependent variable of well-being is conditional on the particular category

of the independent variable. Another way to describe the group difference is in

terms of the slope of the solid line that joins the means. This drops from 3.4

to 2.6, so the slope is −.8. The slope has a negative value because it shows a

decrease in well-being as we travel from left to right along the horizontal axis.

Finally, the group difference can also be expressed in terms of the vertical dis-

tances between the conditional means and the mean for the total group shown

by the dotted line. Remember that these distances can be squared and summed

to enter into the between-group sum of squares.

With these perspectives in mind, we can now focus on a regression

approach to the question of whether positive affect levels might account for

differences in well-being. Figure 1.5 is a scatter plot that reconfigures the

well-being and positive affect data that we saw in Figure 1.2.

The dependent well-being scale appears on the vertical axis, known gen-

erally as the Y axis, while the independent positive affect scale appears on the

horizontal, or X, axis. Although they are not shown as such, we now have five

ladders, one for each value of the positive affect scale. In Figures 1.3 and 1.4

16 THE CORE IDEAS

5 A

4 B C

3 DE FG

2 H I

1 J

W
el

l-B
ei

ng
 S

co
re

0
Women Men

Figure 1.4 Scatter Plot Showing the Relationship Between Gender and
Well-Being

01-Spicer.qxd  7/8/04 2:04 PM  Page 16



we split up the total distribution of well-being scores according to the cate-

gories of the independent variable—women and men in that case. The same

process has occurred in Figure 1.5, where individuals appear in vertical sub-

groups according to their positive affect score. This means that each letter now

represents an individual’s pair of scores: person H scored 2 on both measures,

person C scored 3 on positive affect and 4 on well-being, and so on. Again the

dotted horizontal line shows the mean well-being score for the whole sample.

Of most importance for present purposes, the solid line again captures the rela-

tionship between the two variables at the group level and is generally known

as the regression line. In the following we will first look more closely at this

line and its interpretation as the impact of positive affect on well-being. Then

we will bring back the analysis of variance perspective and use it to explore

the relationship of these variables at the level of individual differences. Finally,

we will look inside the new statistics we have encountered to see how they all

make use of the same few building blocks.

The Regression Line

We just noted that the solid regression line in Figure 1.5 represents the

impact of positive affect on well-being in this sample of 10 individuals. To see

why, it is helpful to ask first where the line comes from. A logical extension of

the strategy we used in Figure 1.4 would be to draw a line that joined up the
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conditional means, that is, the mean well-being scores for the subgroups of

individuals at each value of the positive affect scale. However, these condi-

tional means are not well defined. There is only one individual (A) in the

5 column, one (B) in the 4 column, and none at all in the 1 column. Moreover,

in our continuing search for elegance and simplicity, it would be satisfying to

summarize the relationship with a straight line—the simplifying assumption of

linearity. So instead of joining up the conditional means, we need an alterna-

tive approach that nonetheless produces a similar outcome.

The answer is to make use of an approach based on the principle of least
squares. This may sound daunting, but we have already encountered the prin-

ciple near the beginning of this chapter. When we were summarizing one vari-

able, we chose to use the mean as a reference point and best-guess statistic. A

justification for this was that the mean resulted in a sum of squared deviations

smaller than that produced by any other reference point. In other words, the

mean is a desirable statistic because it obeys the principle of least squares: Its

numerical value depends on minimizing the sum of squares around itself. The

regression line can be thought of as a mean stretched across two dimensions.

A set of data points in one dimension (one ladder) can be summarized with a

point—the mean. The relationship between data points in two dimensions can

be summarized with a line—the regression line. The chosen line is that which

minimizes the vertical distances between itself and all of the individual data

points. So the regression line cuts through the middle of the data points in the

sense that it follows the straight path that produces the smallest sum of squared

deviations around itself. In Figure 1.5, for example, we might be tempted to

draw the regression line more steeply to get closer to individuals F, G, and C.

But this would increase the distances from the other 7 individuals, especially the

distant J, and result in a larger sum of squared vertical distances from the line.

Statisticians have devised computations that identify the regression line

for a set of data, and we will look at some of these later. This suggests that the

line can be expressed as numbers, but what are they? A straight regression line

can be uniquely identified with two numbers. The first we have already intro-

duced as the slope of the line. This number indicates how steeply the line goes

up or down by telling us how the Y (dependent variable) value changes on its

scale when the X (independent variable) value changes by 1 unit on its scale.

The slope for the Figure 1.5 regression line turns out to be approximately .94.

So this indicates that as the positive affect score increases by 1 unit, the hap-

piness score increases by .94 units—almost a one-to-one relationship.
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The slope identifies a family of parallel lines rather than one line in

particular. To pin down the unique line for the data in Figure 1.5, we need a

second number: specifically the number that tells us where the line meets the

upright axis. This is known as the Y intercept or sometimes as the constant.

Its value is approximately .37: the point on the well-being scale where the

regression line meets or intercepts the Y axis in Figure 1.5. The slope and the

Y intercept jointly define a unique regression line and are known generally

as regression coefficients. They can be combined into a single regression
equation that summarizes the relationship between any X and Y variable.

Generally, this relationship is expressed as predicted Y = slope(X) + Y inter-

cept. In words this says that the Y value for any individual can be predicted by

multiplying that individual’s X score by the slope and adding the product to

the Y intercept. For example, the predicted well-being score for individual B

who scored 4 on the positive affect measure would be (.94)(4) + .37 = 4.13.

Since the slope and Y intercept define the regression line, we can translate

this idea back into graphical form. Looking at Figure 1.5, we can again make

a prediction for individual B by noting what well-being score corresponds with

a positive affect score of 4 according to the regression line. An imaginary line

extending up from a positive affect score of 4 hits the regression line at a well-

being score of just above 4, as we just calculated. This predicted score is very

close to person B’s actual score of 4. But notice what happens when we try the

same procedure for person J with a positive affect score of 2. The predicted

well-being score according to the regression line is about 2 (more precisely

2.25), but the actual score is 1. The difference between the predicted and actual

scores is known as the residual—a statistic we will have much more to say

about later. This procedure highlights the important point that we are using

group summary statistics—the slope and Y intercept—to make individual

predictions. Just as when we treated the mean as a basis for prediction, we

are only partially successful. Some of the differences in well-being scores are

explained or predicted, some are not. Again, notice how we continually move

around between-group and individual levels of analysis.

The slope and Y intercept carry very different interpretative weight. The

slope is the key statistic that captures the impact of an independent on a depen-

dent variable. If someone asks us how far differences in positive affect account

for differences in well-being in the present group, the slope of .94 precisely

answers that question at the group level of analysis. As we noted, it says that

a 1-unit increase in positive affect is associated with almost a 1-unit increase

What Makes a Difference? 19

01-Spicer.qxd  7/8/04 2:04 PM  Page 19



in well-being on average. This slope has an implied positive sign, so it

signifies that positive affect and well-being scores move up and down in con-

cert. But a slope may have a negative value, which would mean that as the

X values increased, the Y values decreased, that is, they would move in oppo-

site directions. In general, note that a higher slope value, positive or negative,

indicates a steeper regression line and greater impact. If the slope is zero, the

regression line is horizontal, indicating no impact of the independent variable

on the dependent variable.

The Y intercept usually has little interpretative value. To see why, note that

another way to express it is as the value of Y when the X score is zero. Many

measures in the behavioral and social sciences do not have a meaningful zero.

Scoring a meaningful zero on a personality, attitude, or aptitude measure, for

example, is rarely possible. Accordingly, the Y intercept rarely refers to an

interpretable situation, though it does happen: Zero income, for example, is a

perfectly meaningful, not to mention painful, situation. A final comment on

the Y intercept concerns its sign. Note that a steep regression line may inter-

cept the Y axis below the 0 point of the Y variable. In this case the Y intercept

would have a negative value. This would be accurate but casts further doubt on

the interpretability of the Y intercept in many if not most situations.

ANOVA Perspective on Regression

Earlier we noted that analysis of variance is a special case of regression.

So it should come as no surprise that when we undertake a regression analysis

using any respectable statistical program, the output includes an ANOVA sum-

mary table similar to the one we examined in Table 1.1. What does an ANOVA

table look like when it is part of a regression analysis? Table 1.2 shows the

summary table that results from the present regression analysis.

Remember that an analysis of variance splits up the total variability or dif-

ferences in a dependent variable into components. Since the dependent variable

of well-being has not changed, the bottom “total” rows in Tables 1.1 and 1.2 are

identical. However, while the summary table in Table 1.1 showed component

rows for between- and within-groups variability, the corresponding rows in

Table 1.2 now refer to regression and residual sources. What exactly are these

components? To answer this, we return to the “best-guess” way of thinking.

When we looked at well-being on its own, we said that the mean was our

best guess for predicting individual scores, and the sum of squares (12) and
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variance (1.33) around this mean of 3 captured the extent of our failure to

predict. But now we should be able to improve our predictions if it is true that

positive affect accounts for differences in well-being. To see this in action, we

can refer to Figure 1.6, which is a copy of Figure 1.5 with all cases except

person J removed.

If we use the mean of 3 as a basis for predicting this person’s score, the

error or residual would be 3 − 1 = 2: the length of the vertical line between J

and the dotted horizontal line. As we noted earlier, the regression equation

does a relatively poor job of predicting this individual’s well-being score: a

predicted score of 2.26 versus an actual score of 1 and so an error or residual

of 1.26. This may be relatively poor, but the key point is that the regression

information has increased our predictive power, or conversely decreased the

amount of predictive error for this individual. This case-by-case analysis is

interesting, but how can we combine the information into hit-and-miss indica-

tors for the whole sample?

As we just noted, the length of the vertical line from J to the mean repre-

sents the total error we make in predicting this individual’s well-being score

using the mean. The segment of this imaginary line between the mean and

the regression line, labeled a, represents the gain in predictive power due to

our using positive affect information, that is, the gain due to regression. The

remaining segment between the regression line and the individual score,

labeled b, represents the amount by which we are still failing to predict, that

is, the residual. The segment due to regression can be calculated for each indi-

vidual. These values can then be squared and summed to arrive at the sum of

squares due to regression: 8.44 in Table 1.2. This has 1 degree of freedom

(defined by the number of independent variables), so the regression variance

is also 8.44. Similarly, the residual segments can be squared and summed

across the cases and result in a residual sum of squares of 3.56. This sum of

squares has 8 degrees of freedom (defined as the number of cases minus the
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Table 1.2 ANOVA Summary Table Showing the Relationship Between Positive
Affect and Well-Being

Source of Differences Sum of Squares Degrees of Freedom Variance

Regression 8.44 1 8.44
Residual 3.56 8 0.45

Total 12.00 9
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number of independent variables minus 1), and therefore the residual variance

is 3.56/8 = .45. It is also worth noting that in regression we often refer to the

square root of the residual variance, which is known as the standard error of
estimate. In the present data this has a value of .667 and indicates how spread

out the data points are around the regression line in the form of a standard

deviation (the square root of a variance).

The analysis of variance in a regression context therefore partitions the

total differences or variability in the dependent variable into two components.

The regression component captures differences that can be accounted for by

differences in the independent variable. The residual component captures the

differences that remain unaccounted for. As before, if we express these com-

ponents as sums of squares, the two components literally add up to the total,

as do the degrees of freedom. Also as before, we can combine elements of the

table to form indices of interest. Dividing the regression variance (or mean

square) by the residual variance results in the F ratio: 8.44/.45 = 18.8 if we
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allow for rounding error. We noted earlier that the F ratio is not a direct

measure of the strength of a relationship and has other uses that we will

explore in Chapter 2 and beyond. It is noted here mainly because it is typically

included in an ANOVA summary table.

If we wish to quantify the relationship between positive affect and well-

being in terms of individual differences, we can divide the regression sum of

squares by the total sum of squares: 8.44/12 = .703. This is a direct parallel to

eta2, which we encountered earlier, and is known as r2 or, more formally, the

coefficient of determination. This, too, can be multiplied by 100 and inter-

preted in terms of explained variability. So in these data positive affect

explains 70.3% of the variability or individual differences in well-being. If we

take the square root of the coefficient of determination, we produce the well-

known Pearson’s correlation coefficient r, which here has a value of .84.

Unlike r2, Pearson’s r can be positive or negative and so can take on values

between −1 and +1. Stronger relationships move r closer to +1 or −1, while a

value of zero indicates the total absence of a relationship, as long as the rela-

tionship is best captured by a straight line. The value of .84 indicates a strong

positive relationship such that higher scores on the positive affect measure are

strongly associated with higher well-being scores.

It is important to reiterate the different types of information provided by

regression and correlation coefficients, respectively. Regression coefficients,

or more particularly the slope, indicate how an independent variable accounts

for group differences in scores. The slope quantifies how group differences in

the independent variable impact on group differences in the dependent vari-

able. In contrast, correlation coefficients and their relatives show how far indi-

vidual differences can be accounted for. Unlike regression coefficients, they

express relationships in a symmetrical form. If we were to switch the inde-

pendent and dependent variable status of positive affect and well-being, the

regression coefficients would be different. Statistically speaking, the impact of

positive affect on well-being is not the same as the impact of well-being on

positive affect. However, this reversal would leave r and r2 unchanged. We can

accurately talk about each explaining 70.3% of variability in the other or about

both sharing 70.3% of their variability. As a final demonstration of the differ-

ence between regression and correlation coefficients, it is worth revisiting

Figure 1.5 and noting that the regression coefficients define the regression line

itself, whereas r and r2 convey how tightly the data points cluster around

the line. A higher slope value (positive or negative) indicates a steeper line,
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whereas a higher correlation value (positive or negative) indicates a tighter

distribution of data points around the line.

Inside the Coefficients

To complete this introduction to simple regression, we will look inside the

regression and correlation coefficients, to demonstrate again how much we can

achieve with just a few building blocks and to show how their values are cal-

culated. Inside we will find the mean, variance, and standard deviation. But

note that none of these actually captures the bivariate relationship between two

sets of scores; each is a so-called univariate statistic. So we need to introduce

one more building block called the covariance, which summarizes the

strength and direction of a bivariate relationship.

As the name suggests, the covariance is a close relative of the variance.

To compute the variance, we calculated a deviation score for each individual,

squared and summed them across individuals to produce a sum of squares, and

then took the average by dividing the sum of squares by the degrees of free-

dom. In the bivariate situation each individual has two deviation scores, one

for well-being and one for positive affect in the present example. The key

move in developing the covariance is to multiply each pair of deviation scores

to form so-called cross-product scores. All of these scores are then added

together to produce the sum of cross-products. This is a direct analog of the

sum of squares, but whereas the sum of squares captures all of a single vari-

able’s variability, the sum of cross-products captures all of the covariability

between two variables. This total covariability can then be averaged by divid-

ing through by the degrees of freedom, which again is the number of individ-

uals minus 1. The result is the covariance, which, for the well-being and

positive affect relationship, is approximately 1. The sign of the covariance,

positive in this case, indicates whether the relationship is positive or negative.

However, the magnitude of the covariance is not readily interpretable as it

stands. Instead it becomes the key element inside regression and correlation

coefficients whose magnitude can be interpreted.

The slope can simply be defined in general as the covariance of X and Y

divided by the variance of X. This definition highlights how the slope indexes

the strength and direction of the X-Y relationship relative to differences in X,

the independent variable. So for the present data, the slope would be 1/1.07 =
.94, as we noted earlier. This formula for the slope also reveals why the
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magnitude of the slope would change if we reversed the status of the independent

and dependent variables. Although the covariance would not change, the vari-

ance in the denominator of the slope would now be that for well-being, which

is 1.33. So the slope indexing the impact of well-being on positive affect

would be 1/1.33 = .75. The slopes for the impact of X on Y and Y on X are the

same only when the two variables have identical variances. With the slope

defined in terms of a covariance and variance, we can now use it in a simple

formula for the Y intercept. The Y intercept is just the product of the X mean

and the slope subtracted from the Y mean. For the present data, this would be

3 − (2.8)(.94) = .37, as we noted earlier.

Finally, what are the components of Pearson’s r correlation coefficient?

Not surprisingly, the covariance again plays the key role as it captures the

strength and direction of a bivariate relationship. To convert the covariance

into a correlation, we simply divide it by the product of the X and Y standard

deviations. So Pearson’s r for the well-being and positive affect relationship

would be 1/(1.16)(1.03) = .84, the figure we produced earlier by another route

using the sums of squares from the ANOVA table. We also noted that r and r2

capture a bivariate relationship in a symmetric fashion: Reversing the status of

X and Y has no effect. This is now further apparent in the formula using the

covariance and the standard deviations. The covariance of X and Y is the same

as that for Y and X, and it does not matter in which order we multiply the stan-

dard deviations: a truly symmetric statistic.

Overview of Section 1.1

This completes a fairly lengthy introduction to the basic statistics used to

quantify differences in one variable, and the relationship between differences

in two variables, when the dependent variable is in the form of scores. Given

this length, a brief overview may be helpful and serve to reiterate how these

univariate and bivariate statistics are all derived from the same building blocks.

In describing differences in one variable, we moved from the mean to the devi-

ation score, to the sum of squares, to the variance via the degrees of freedom,

and finally to the standard deviation. We then discussed how to discover

whether category differences might account for these score differences, using

an approach called the analysis of variance. This involved dividing up the total

variability in the scores into between- and within-group components using

sums of squares, degrees of freedom, and variances. From there we derived
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three statistics: the F ratio, eta2, and Wilks’s lambda, all using ratios of the

statistics in the ANOVA summary table. However, we noted that the difference

between mean scores on the dependent variable across categories remains the

most fundamental way of describing the effect of the categories on the scores

at the group level of analysis.

We then turned to simple regression, which is used to discover whether

score differences in an independent variable might account for score differ-

ences in a dependent variable. The regression line, identified by its slope and

Y intercept, was introduced as a way of capturing the impact of the indepen-

dent variable on the dependent variable at the group level. We then saw how

analysis of variance could be used to divide up the total variability in the

dependent variable into predictable (regression) or unpredictable (residual)

components. Again we found that elements in the ANOVA summary table

could be combined to form further statistics: the F ratio, the coefficient of

determination (r2), and Pearson’s correlation coefficient (r). Finally, we intro-

duced the building block of the covariance and showed how it, in conjunction

with means, variances, and standard deviations, is used to build the bivariate

regression and correlation coefficients.

The mean, sum of squares, degrees of freedom, variance, covariance, and

standard deviation make up an immensely powerful building set. In the fore-

going sections we have used them to build a first story of techniques for ana-

lyzing bivariate data, revolving around the analysis of variance and simple

regression. In Part 2 of the book we will move to the higher level of multi-

variate analysis and see, for example, how simple regression and correlation

can be extended into multiple regression (Chapter 4) and factor analysis

(Chapter 7). But however complex the situation becomes, we will continue to

combine these basic building blocks.

1.2 ANALYZING DATA IN THE FORM OF CATEGORIES

To complete this first chapter, we shift our attention to data that are all in the

form of categories. Imagine that we ask a group of 10 men and a group of

10 women the simple question of whether or not they are generally happy, with

the intention of finding out whether there is a gender difference. This is the

same research question we asked earlier when exploring analysis of variance,

but now the data have a different form. The present data come from two
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categorical variables each with two categories: men/women and happy/not

happy. Since the measurement procedures here do not involve rank ordering or

assuming equal distances between categories, all we can really do is to count

the number of individuals within and across categories and develop summary

statistics from there. Accordingly, this section will be considerably shorter

than Section 1.1. However, when we subsequently move to multivariate ana-

lysis of categorical data in Chapters 5 and 8, it will again be apparent how

powerful techniques can be developed from very simple beginnings.

Table 1.3 shows the 20 individuals, labeled A–T, distributed on a set of

three ladders, each with two rungs. The left-hand ladder shows the happiness

distribution for the women, and the middle ladder the distribution for the men.

As noted above, all we can do with categorical data is to count frequencies,

and these are shown below the letters on each rung. The right-hand ladder

shows the total happiness distribution just in the form of frequencies to avoid

repetition and clutter: 12 happy individuals (A–L) and 8 not happy ones (M–T).

Note that, since neither variable has ordered categories, the order of rungs and

of category ladders is arbitrary. This type of display is known as a contingency
table since it shows how the distribution of a dependent variable (happiness)

is contingent on the distribution of an independent variable (gender). What

have been referred to as “rungs” are more conventionally known as cells.

The frequencies in the four cells within the table are called the conditional
frequencies, and those around the edges that show the total distributions for

the two variables are called the marginal frequencies. The bottom right-hand

cell contains the total frequency, which of course is equal to the number of

individuals.

Given the limited form of the data, how might we quantify the distribu-

tion of a single variable such as the dependent happiness variable, shown in the

right-hand column? Neither the mean nor the median would be a meaningful
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Table 1.3 Contingency Table Showing the Relationship Between Gender and
Happiness

Women Men Total

Happy ABCDEFGH IJKL
8 4 12

Not Happy MN OPQRST
2 6 8

Total 10 10 20
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summary of the middle of the distribution. Instead we use the mode, which is

simply the highest frequency, that is, 12. So the modal category is the happy

one; the most common status for this group of people is to be happy. To cap-

ture differences or variability, we can make use of ratios of frequencies in two

ways. Dividing a marginal cell frequency by the total and multiplying it by 100

provides a difference statistic in the form of a percentage. So 100(12/20) =
60% of the group are happy, while 100(8/20) = 40% are not. These relative

frequencies are often treated as probabilities, for example, a case has a 60%

chance of being happy. Alternatively, we can form a ratio of marginal cell

frequencies to produce an odds statistic. The odds of being happy in this group

are 12/8 = 1.5; conversely, the odds of not being happy are 8/12 = .67. Notice

that an odds of 1 indicates an equal split and therefore maximum variability,

as in the case of the gender variable. The further the odds deviate above or

below 1, the less the variability or difference on that variable.

One reason for introducing the odds statistic is that it can easily be devel-

oped into a useful bivariate statistic that captures the relationship between two

categorical variables. If we look inside the table, we can see that the so-called

conditional odds of being happy for women are 8/2 = 4, and the conditional

odds for men are 4/6 = .67. If we divide one of these odds by the other, we

arrive at the odds ratio. This will be 4/.67 = 5.97, which says that women are

nearly 6 times as likely to be happy than not, compared with men in this group.

This method of capturing the relationship between categorical differences has

become a commonplace of public health messages. Statements such as “smok-

ers are twice as likely to suffer a heart attack as nonsmokers” are based on the

calculation of odds ratios. Unlike regression and correlation coefficients, where

the absence of a relationship is indicated by a value of zero, an absent relation-

ship between two categorical variables results in an odds ratio of 1. So the fur-

ther the odds ratio deviates above or below 1, the stronger the relationship.

In Subsection 1.1.2, on analysis of variance, we briefly encountered a statis-

tic called the F ratio. This was crudely described as a way of indexing the extent

to which group differences on a dependent variable are greater than what

might be expected on the basis of individual differences. We can take a simi-

lar approach with wholly categorical data, using a statistic called chi2. This sta-

tistic can be used to quantify how much greater the group differences we see

in the conditional frequencies in Table 1.3 are than we would expect given the

individual differences evident in the marginal frequencies. Notice that this is

equivalent to asking how far the odds ratio differs from 1, or to asking whether
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there is a relationship between gender and happiness in these data. All other

things being equal, the value of chi2 increases with the strength of the rela-

tionship, and in the present case it has an approximate value of 3.33. However,

as with the F ratio, chi2 is not a direct measure of the strength of a relationship.

Its true function will become clearer in Chapter 2 as a so-called test statistic.

For now, it is sufficient to note that it can be transformed to arrive at a corre-

lation coefficient called the phi coefficient. The transformation involves divid-

ing chi2 by the total frequency and then taking the square root: The square root

of 3.33/20 = .41. This turns out to be a special version of Pearson’s r, which

can be used to quantify the relationship between two dichotomous variables,

that is, each having two categories. Accordingly, we can report that gender and

happiness are correlated .41 in the present group, or we can square phi and

multiply it by 100, as we did for r2, and say that gender explains about 16.8%

of the variability in happiness.

Much more could be said about the nature of chi2, the analysis of contin-

gency tables with more than 4 cells, and other types of correlation coefficients

for categorical data. However, the ideas and statistics we have briefly dis-

cussed are sufficient as a foundation for later chapters. As noted earlier, we

will build directly on this foundation in Chapter 5 when we encounter logistic

regression, and especially in Chapter 8 when we explore log-linear analysis in

general to see how it can be used to analyze contingency tables with more than

two categorical variables.

1.3 FURTHER READING

Good introductions to basic data analysis can be found in Rowntree (2003) and

Rosnow and Rosenthal (2001). More extensive treatments of univariate and

bivariate analysis techniques can be found in Hays (1994) and Rosenthal

and Rosnow (1991). Good, focused introductions to ANOVA and simple regres-

sion are available in Keppel, Saufley, and Tokunaga (1993) and Darlington

(1990), respectively.
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