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ACCOUNTING FOR DIFFERENCES
IN A COMPLEX WORLD

This chapter provides a ladder that leads from the foundations laid in the

first two chapters to the higher levels of data analysis where we find

multivariate techniques. The ideas and techniques we have discussed so far

enable analysts to find patterns in one or two sets of differences, that is, to

engage in univariate and bivariate analysis. However, it is obvious that the

world is not neatly packaged into isolated pairs of variables. So if attempts are

made to account for differences only in a two-by-two fashion, it is inevitable

that the resulting pictures will be at best limited or at worst distorted.

Multivariate techniques are tools that help the analyst reduce these limitations

and distortions by capturing more complex portions of the world inside one

analytic frame.

In Section 3.1 we examine the fundamental limitations of bivariate analy-

sis when it is applied to data representing three or more variables. These limi-

tations stem partly from the increasing number of variables as such, but also

from the more complex patterns of relationships that now become possible and

even likely. This latter concern will lead us to introduce the distinctive relational

patterns of confounding, moderating, and mediating relationships. Section 3.2

introduces the strategy that lies at the heart of multivariate data analysis, and

discusses in general terms how this strategy combats the limitations of bivari-

ate analysis identified in Section 3.1. The strategy involves combining variables

into a composite by “weighting” each variable and adding it into the compos-

ite. The notions of composites and weights are so fundamental that we will
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examine their meaning and interpretation in some detail, but always stressing

conceptual rather than statistical issues. To ensure that these central ideas are

firmly grounded, we begin the section with a review of simple regression;

extend this into multiple regression, which accommodates more than one inde-

pendent variable; and finally show how the multiple regression approach can be

generalized into a broad MDA strategy. In Section 3.3 we step back from the

details and try to gain a more critical perspective on what multivariate data

analysis has to offer. Its strengths are considerable, but they can easily be exag-

gerated or at least misinterpreted. This happens partly because of the language

employed, when statistical terms such as “explanation” and “prediction” appear

to promise a lot but actually have much more constrained meanings than they

do in general research discourse. With these final reflections in mind, we should

then be ready to approach the techniques themselves in Part 2 in an informed

and balanced way.

3.1 LIMITATIONS OF BIVARIATE ANALYSIS

In Chapter 1 we used simple regression to explore the possibility that differ-

ences in positive affect might account for differences in well-being. Since we

also had data on life satisfaction, we could have repeated the analysis to see

whether differences in satisfaction also account for differences in well-being.

What are the limitations of addressing these two relationships in separate

bivariate analyses? They can be organized into three categories: descriptive,

inferential, and relational limitations.

From a descriptive perspective, we would have no indication of how pos-

itive affect and satisfaction are jointly related to well-being. For example, we

would have no ready answer to the question of how much variance in well-

being is explained in total by these two attributes. Under certain circumstances

an answer to this question can be derived from bivariate analyses but, as we

will see, these circumstances are likely to be rare. More powerful answers to

this type of descriptive question are to be found in multivariate analysis.

Turning to statistical inference, in Chapter 2 we found that the outcome of

a null hypothesis test depends critically on alpha, the threshold probability that

must be met if the null hypothesis is to be rejected. The value of alpha is our

protection against inappropriately rejecting the null hypothesis (Type I error)

more often than we would wish—usually 5% of the time. One feature of this
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procedure that we passed over at the time is that the calculations are predicated

on a “one-off” sampling logic. If we keep returning to the data set to test more

and more hypotheses that are linked by common variables, the actual value

of alpha inflates invisibly. So, while we may think that a protective alpha of

.05 is in place, its real value may be much higher. Put another way, the more

hypotheses we test about the same variables, the more likely we are to believe

erroneously that we have found an effect. A wide range of techniques have

been developed to counter this inflationary consequence of multiple tests, and

we will explore some of them in Chapter 6. These are valuable, but it would

be helpful to also have at our disposal another approach that enabled us to test

a set of hypotheses all at once. We will find that multivariate analysis provides

exactly this facility so that, for example, we could evaluate whether positive

affect and satisfaction have any statistically significant relationship with well-

being using just one multivariate test.

Although the limitations of bivariate analysis with respect to indexing the

total effect of a set of variables and to reducing the number of hypothesis tests

are important, those concerning complex relationships among variables easily

outweigh them. Here we return to the central idea that the world is not com-

posed of isolated pairs of variables. It is unlikely, for example, that any effects

of positive affect and satisfaction on well-being are independent of each other,

or indeed of other variables so far unmentioned. If this is true, we need to think

systematically about how three or more variables might be related in principle

and then about how such patterns might be statistically analyzed. Clearly,

by definition, bivariate analysis will not be up to the task, and so we reveal

another motive for turning to multivariate analysis.

Three types of multivariable relational patterns are commonly considered

by analysts: the confounding, moderating, and mediating patterns. We can

illustrate all of these with our two independent variables and one dependent

variable, but we need to appreciate that these are the simplest, three variable

versions. As more variables are added into an analysis, the potential for ever

more complex relationships grows at an alarming rate. Also, this basic list of

patterns is not exhaustive, but it covers many analytic situations and provides

building blocks for other possibilities.

In the confounding pattern the individual effects of two independent vari-

ables on a dependent variable are distorted because the independent variables

are themselves related. So, for example, if positive affect and satisfaction are

systematically related in some way, then it may prove difficult to untangle the

Accounting for Differences in a Complex World 63

03-Spicer.qxd  7/12/04 9:05 AM  Page 63



effect of each on well-being: They are potentially confounded with each other.

This means that a search for confounds should focus on variables that might

be systematically related to an independent variable and to a dependent vari-

able: a triangle of relationships. It is important to appreciate, though, that even

when such a triangle is suspected or demonstrated, distortion due to con-

founding will not necessarily occur. The relationship triangle is a necessary

but not sufficient condition for confounding. It is also important to note that

distortions due to confounding can manifest in a variety of ways. Depending

on the strength and direction of the relationships in the triangle, effects may

appear, disappear, increase or decrease in magnitude, or change their sign. As

a consequence, it is desirable not only to consider and measure potential con-

founding variables, but also to conduct analyses that reveal where confounding

is actually occurring and to exercise appropriate control over it. Multivariate

analysis provides the means to achieve this, using what is known as statistical

control. Later we will use this type of control to see if positive affect and sat-

isfaction are confounded and to obtain estimates of their unconfounded effects

on well-being.

The moderating pattern is not a form of potential distortion as such, but it

opens up the way for more sophisticated theorizing even with only three vari-

ables. In essence it suggests that the relationship between an independent vari-

able and a dependent variable differs according to the level of a third variable.

It is thus suggested that the third variable moderates the relationship. In our

example we might suggest that the impact of positive affect on well-being will

be stronger for individuals who enjoy a higher level of satisfaction. The key

word here is “stronger” as this specifies how the effect changes at higher levels

of the moderating variable. This type of pattern in which a bivariate relation-

ship is thought to differ according to the level of a third variable is also known

as an interaction effect. In the example positive affect and satisfaction are pro-

posed to have an interactive or joint effect on well-being, which is additional to

whatever individual effects each may have. Here we have a so-called two-way

interaction effect since two independent variables are implicated. As more inde-

pendent variables are added to the picture, more two-way and higher-order

interaction effects become possibilities. Finally, note that the analyst is free to

specify any form of moderating relationship as long as there is theoretical or

empirical justification. The particular form suggested here, whereby the effect

of positive affect increases at higher levels of satisfaction, has just been drawn

from the air, however much it might appeal to common sense.
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The mediating pattern can be thought of as a causal chain and as another

way in which theorizing might be made more sophisticated. In this pattern

an independent variable is seen as having an effect on a dependent variable

through another independent variable. Put another way, if we imagine a causal

chain linking three variables, the middle variable is said to mediate the effect

of the first variable on the third. We might theorize that the effect of satisfac-

tion on well-being is mediated by positive affect. In this case, satisfaction pro-

duces positive affect that in turn enhances well-being. It is possible in principle

to distinguish between total and partial mediation. Applying the total media-

tion scenario to our example would suggest that the only way in which satis-

faction influences well-being is through positive affect. Partial mediation would

suggest that positive affect is only one pathway by which satisfaction might

have an impact on well-being. Choosing between total and partial mediation

effects is again the prerogative of the analyst and an important issue as it

will guide expectations about the patterns that should emerge in multivariate

analyses.

Later in the following section we will discuss in general terms how con-

founding, moderating, and mediating relationships can be viewed from a mul-

tivariate analysis perspective. For now, it is important mainly to appreciate the

form of each type of relationship and the distinctions among them. It is also

important to appreciate that the types of relationship are not mutually exclu-

sive. All three may occur in the same analysis and require appropriate analytic

strategies. Whatever else is clear at this point, it should be evident that bivari-

ate strategies in and of themselves cannot begin to deal with the complexities

we have introduced. They do, however, provide the building blocks from

which multivariate strategies can be constructed.

3.2 THE MULTIVARIATE STRATEGY

We are now finally ready to approach the multivariate question: How do we

set about accounting for differences when the analysis contains three or more

variables? As we saw in the last section, ideally the answer to this question

should enable the analyst to treat variables in sets or subsets, minimize the

number of statistical tests, and provide ways of capturing confounding, mod-

erating, and mediating patterns of relationships. Our discussion of the answer

will begin in Subsection 3.2.1 with a review and some further elaboration of
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the technique of simple, or bivariate, regression analysis that we introduced

in Chapter 1. Then, in Subsection 3.2.2 we will see how this can be easily

extended into multiple regression, when there are two or more independent

variables. After exploring in general terms how multiple regression can be

used to analyze confounding, moderating, and mediating relationships, we

will discuss in Subsection 3.2.3 how the regression approach can be seen as

just one example of the generalized strategy that lies at the heart of multi-

variate analysis. So simple regression and multiple regression are used in this

section simply as a vehicle to introduce the key concepts of multivariate

analysis. A more detailed treatment of multiple regression can be found in

Chapter 4.

3.2.1 A Review of Regression Building Blocks

Imagine that 5 individuals, identified as A–E, provide scores on measures

of positive affect, satisfaction, and well-being. This time each score is on an

interval scale with a possible range of 1 to 10. The imaginary scores appear in

Table 3.1.
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Table 3.1 Three Sets of Scores for 5 Individuals (A–E)

Individual Positive Affect Satisfaction Well-Being

A 3 3 3
B 5 6 5
C 6 5 4
D 7 4 5
E 9 7 8

To what extent are differences in well-being due to positive affect in these

data? As discussed in Chapter 1, the relationship between two interval-level

variables can be summarized with a regression equation, which has two

unknowns: the slope and the Y intercept. Calculating these for the present data

gives a slope of .75 and a Y intercept of .5. These numbers can be used to

address the research question from the perspective of individual differences

and of group differences. But before we look at these, it is helpful to begin by

focusing on just one individual such as person E. The regression equation can

be used to predict Person E’s well-being score on the basis of E’s positive
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affect score of 9, by multiplying the latter score by the slope and adding the Y

intercept, as follows:

E’s predicted well-being score == slope times E’s positive affect score
++ Y intercept

== .75(9) ++ .5
== 7.25

How much in error is this prediction for person E? This can be calculated

by simply subtracting the predicted from the actual well-being score of 8:

8 − 7.25 = .75, an error value known as the residual. So, in effect, the regres-

sion equation can be used to generate two new scores for person E or for any

other individual in the sample: a predicted score on the dependent variable and

a residual. The first score of 7.25 represents that part of the dependent variable

that can be predicted from the independent variable, and the second residual

score of .75 represents the remaining unpredictable part. Moreover, obviously

these two new scores add up to the dependent variable score:

E’s dependent variable score == E’s predicted score
++ E’s residual score

8 == 7.25 ++ .75

Since each person has a predicted and a residual score, we can summarize

across the 5 cases and derive statistics that capture individual differences in the

usual way. All of the relevant statistics appear in the ANOVA summary table

in Table 3.2. The sum of squares for the predicted scores is otherwise known

as the regression sum of squares that we encountered in Chapter 1, and divid-

ing it by the number of independent variables produces the regression variance

(mean square). In the present example the regression sum of squares and vari-

ance are both 11.25. How can this be turned into a more interpretable statistic

that indicates how much of the individual differences in well-being can be

accounted for by differences in positive affect?
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Table 3.2 ANOVA Summary Table Showing the Relationship Between Positive
Affect and Well-Being

Source of Differences Sum of Squares Degrees of Freedom Variance

Regression 11.25 1 11.25
Residual 2.75 3 0.92

Total 14.00 4
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The regression sum of squares of 11.25 indicates how much of the

individual differences in well-being can be predicted from differences in pos-

itive affect. The total amount of individual differences in well-being regardless

of any other variable is indicated by the sum of squares for well-being, which

is 14. These two figures turn out to be directly comparable because of the

Y intercept, about which we have had little good to say up to this point. The

Y intercept can be seen as an adjustment to the regression calculations, which

ensures that the mean of the predicted dependent variable is equal to the mean

of the dependent variable itself. It then follows that our two sums of squares

numbers are comparable because they are based on deviations around the same

mean. As a result, we can simply divide the regression sum of squares by the

total sum of squares and arrive at r2: the proportion of variance in the depen-

dent variable accounted for by the independent variable. For the present data

r2 is 11.25/14 = .804, which says that positive affect accounts for 80.4% of

variance in well-being.

Turning now to the five residual scores, we see that these can also be

turned into a sum of squares and variance. Following from the logic of r2, the

residual sum of squares divided by the total sum of squares will indicate the

variance in well-being that is not accounted for by positive affect. This num-

ber is 2.75/14 = .196, which says that positive affect fails to account for 19.6%

of the variance in well-being. As we would expect, explained variance and

unexplained variance add up to 1 or 100%. It is also possible to view unex-

plained variance in terms of a standard deviation. If we take the square root of

the residual variance, we produce the standard error of estimate, which in the

present case is .96. This is directly comparable with the standard deviation of

the dependent variable, which is 1.87. One way to make this comparison is in

terms of a proportional reduction in error. If we subtract the standard error of

estimate from the standard deviation of the dependent variable and divide it by

the latter, we can see proportionately how much error is reduced by taking

account of the independent variable as opposed to just using the mean of the

dependent variable. The calculation here is (1.87 −.96)/1.87 = .487. This

means that the amount of error made in predicting individual well-being scores

is reduced by 48.7% if we take account of positive affect scores.

We have used the regression equation to generate predicted happiness

scores and residuals for each individual and then derived summary statistics

such as r2 and the standard error of estimate to quantify how far individual dif-

ferences in positive affect account for individual differences in well-being.
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Now we turn to the question of how far group differences in positive affect

account for group differences in well-being. This is simply answered by refer-

ence to the slope statistic in the regression equation. The value of .75 says that

groups who differ by 1 on the positive affect measure differ by .75 on the

well-being measure, on average. Note that because we are now taking a group

perspective, we are concerned with what’s happening “on average.”

This completes the review of key statistics in simple regression. We have

taken time to revisit and elaborate on them because all of them carry over into

multiple regression. So, having a good grasp of them at this point will smooth

the transition we are about to make from bivariate to multivariate analysis.

3.2.2 The Composite Variable in Regression

In Subsection 3.2.1 we divided up the relationship between two variables,

well-being and positive affect, into additive components. We saw that:

well-being score == predicted well-being score
++ residual

and decomposed the right-hand side of the equation into:

predicted well-being score == slope(positive affect score)
++ Y intercept

It is this regression equation that provides the vehicle for dealing with

more than one independent variable. All that is required is to extend the equa-

tion by literally adding in a new term for each additional independent variable.

So, for the data in Table 2.1 the equation would be:

predicted well-being score == slope(positive affect)
++ slope(satisfaction)
++ Y intercept

To explore the details of this new multiple regression equation, we will

focus again on person E in Table 3.1. The regression equation for person E is:

E’s predicted well-being score == (.5)(9) ++ (.5)(7) ++ (−−.5)
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The scores for positive affect (9) and satisfaction (7) are taken from the

last row of Table 3.1. The values for the slopes (which happen to be the same)

and Y intercept have been calculated using the SPSS computer package. (As

we move into multivariate analysis proper we will no longer refer to the cal-

culations as such as they become too complex and are best left to a computer.)

The predicted well-being score for person E is 7.5. Since this person’s actual

well-being score is 8 (see Table 3.1), the residual score is .5. Note that the pre-

dicted score is now based on two independent variables rather than just the one

we used earlier and, for this case, has reduced the residual from .75 to .5.

Adding in information about person E’s satisfaction has increased predictive

power or, equivalently, reduced predictive error. This may be true for this

person E, but how well are we now accounting for individual differences for

all of the cases?

Although the regression equation has been extended, the predicted happi-

ness scores and residuals are no different in form from those in simple regres-

sion. So we can proceed straight to summary statistics derived from these

scores. In terms of explained variance, the computer calculations result in a

value of .893. Positive affect and satisfaction together account for 89.3% of

individual differences in well-being for these 5 cases, compared with the

80.4% we achieved with just positive affect. In multiple regression this statis-

tic becomes the multivariate version of r2 and is now referred to as multiple
R2, with an uppercase R, but its interpretation remains unchanged. The other

individual difference statistic we reviewed earlier was the standard error of

estimate: an indicator of unexplained variability. When only positive affect

was in the equation, the standard error of estimate was .96. When satisfaction

is added in, the computer calculations show that the standard error of estimate

drops to .87—a further reduction in error.

Reflecting on the nature of R2 takes us straight to the core concept in mul-

tivariate analysis. It can be thought of as the squared correlation between the

actual and predicted well-being scores. Since the predicted scores are generated

by the independent variables packaged up inside the multiple regression equa-

tion, R2 can also be seen as the squared correlation between the dependent vari-

able and a composite variable that contains all of the independent variables.

This forming of a composite variable in order to analyze many variables all at

once is the strategy that lies at the heart of multivariate analysis. Here we see

the strategy in action in the form of a multiple regression equation, but later we

will generalize the idea to reveal its analytic power and scope more fully.
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The composite variable not only generates the predicted and residual

scores for each individual in the analysis, but also contains information that

indicates in what way group differences in the independent variables relate

to group differences in the dependent variable. As in simple regression, this

information is to be found in the slopes. The simple regression we conducted

earlier on positive affect and well-being resulted in a slope of .75, whereas the

positive affect slope in the multiple regression is .5. Something has shifted, but

what exactly? In a multiple regression a slope is more properly known as a

partial slope. Roughly speaking, it quantifies the impact of an independent

variable over and above the impacts of all other independent variables in the

equation. The notion of a partial slope is not intuitively obvious, and it is fun-

damental to multivariate analysis. So it will be beneficial to explore various

ways in which a partial slope can be interpreted.

The most general way to conceptualize a partial slope is in terms of statis-

tical control. The partial slope of .5 indicates the impact of positive affect on

well-being when satisfaction is statistically controlled. Similarly, the partial

slope for satisfaction (which also happens to be .5) indicates its impact on well-

being when positive affect is controlled. But what is being controlled? The

answer is the relationship between positive affect and satisfaction. The correla-

tion between these two independent variables turns out to be .71, that is, they

share just over 50% of their variance (.712 = .504). This means that their effects

on well-being may be confounded, and so some sort of confound detection and

control is needed. This is exactly what multiple regression offers by way of par-

tial slopes. The shift from a slope of .75 in the simple regression to a partial slope

of .5 in the multiple regression shows confound detection and control in action

for the positive affect variable. The first number indicates the effect of positive

affect on well-being, whereas the second indicates the same effect once the con-

founding relationship with satisfaction has been controlled or neutralized.

Another way to approach the partial slope is in terms of holding a poten-

tially confounding variable constant. The strategy of controlling a variable by

holding it constant is a staple of experimental design. If we wanted to study

the causes of a behavior that varied systematically with the time of day, for

example, then it would be wise to always conduct the study at the same time.

Holding time constant in this way would ensure that it could not confound

the effects of other variables of interest. Turning a variable into a constant

guarantees that it cannot covary with any other variable and so cannot be a

confound. The confound triangle of relationships has been broken. This
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strategy of literally holding something constant is obviously not always a

practicable or ethical option. The partial slope can be seen as another way of

achieving the same end in a nonliteral, statistical fashion. So the partial slope

for positive affect indicates its impact on well-being when satisfaction is held

constant. Put another way, the partial slope shows how much well-being dif-

fers across groups who differ by a score of 1 on the positive affect measure,

but who do not differ on the satisfaction measure.

A third way to think about the partial slope is in terms of adjusted variables.

From this perspective the partial slope shows the impact of an independent vari-

able on the dependent variable after the independent variable has been adjusted

to take account of its relationships with the other independent variables.

Synonymously, analysts also talk about “correcting” for or “partialing” out other

variables. So the partial slope for positive affect captures the impact of positive

affect on happiness after adjusting for, correcting for, or partialing out positive

affect’s relationship with satisfaction. Although we will not delve into the statis-

tical mechanics of how this is achieved, it is instructive to look a little more

closely at how partialing is performed. One way to do this is to think of multi-

ple regression as a series of simple regressions.

To find the partial slope for positive affect, we could first conduct a sim-

ple regression with positive affect as the dependent variable and satisfaction as

the independent variable. This would generate two new variables: a predicted

positive affect score and a residual score for each case. The residuals variable

contains those differences in positive affect that are not predicted by differ-

ences in satisfaction. So the residuals variable can be treated as an adjusted

positive affect variable, that is, adjusted to exclude any differences due to sat-

isfaction. The positive affect variable has been “residualized” with respect to

satisfaction. This residualized variable would then become the independent

variable in another simple regression with well-being as the dependent vari-

able. The slope for positive affect from this simple regression would be equal

to the partial slope from the multiple regression since the positive affect slope

has been adjusted for the relationship between positive affect and satisfaction.

We could do the same parallel procedure for satisfaction. First there would be

a simple regression, this time with satisfaction as the dependent variable and

positive affect as the independent variable. Then there would be another sim-

ple regression with the residuals variable from the first regression as the inde-

pendent variable (residualized satisfaction) and well-being as the dependent

variable. This would produce a slope indicating the impact of satisfaction

having adjusted for positive affect.
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Using the regression equation to form a composite variable provides

solutions to some of the limitations we discussed in Section 3.1. By generating

the predicted dependent variable, we have a device for calculating statistics

such as R2 that refers to the independent variables as a set. The multiple regres-

sion shows that positive affect and satisfaction together explain 89.3% of the

variance in well-being. It is important to appreciate that this R2 figure is dif-

ferent from the sum of the two r2 values that are generated by the two separate

simple regressions. These simple regressions show that positive affect explains

80.4%, and satisfaction explains 71.4% of variance in well-being. However,

because of the relationship between the two independent variables (r = .71),

the relationship of each with the dependent variable is inflated in this case. The

positive affect variable’s predictive ability is confounded with that of satisfac-

tion and vice versa. The statistical control provided by multiple regression not

only produces partial slopes, but also produces an R2 value that is adjusted to

take account of correlations among independent variables. The only time that

a multiple regression R2 is equal to the sum of the simple regressions’ r2s is when

the independent variables are uncorrelated, and so there is nothing to adjust for.

Since multivariate techniques are most commonly adopted in order to deal with

correlated independent variables, this is a rare situation.

The second limitation of conducting bivariate analyses on multivariate

data that we identified in Section 3.1 was the problem of the inflation of Type

I error (alpha) produced by multiple hypothesis tests. This, too, is countered

by the composite variable and its products. When a multiple regression is car-

ried out, it is usual to begin by testing the null hypothesis that R2 is zero in the

population sampled using an F test. This is equivalent to testing whether any

of the independent variables has a statistically significant relationship with the

dependent variable. Since all of the relationships are tested simultaneously,

this is often referred to as an omnibus test. This is a very efficient approach

in the sense that if the test of R2 is not statistically significant, that is, the null

hypothesis is accepted, there is no need to conduct further hypothesis tests on

individual independent variables. In our example the F of 8.33 has an associ-

ated p value of .11. Assuming that we adopt a conventional alpha of .05, the

null hypothesis is therefore accepted, and no further tests are justified. Despite

the large sample value for R2 of .893, it is still consistent with the hypothesis

that the population R2 is zero. Note in passing that this outcome is highly

influenced by the tiny sample size and the consequent lack of statistical power.

If the test of R2 had been statistically significant, we could have proceeded

to test hypotheses about each of the partial slopes. This type of analysis tests
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the hypothesis that a partial slope is zero in the population using either a t or an

F test. For example, the partial slope for positive affect is .5, its t value is 1.83,

and its p value is .209. As the R2 test already suggested, there is no significant

relationship between positive affect and well-being, and a t test for the satis-

faction slope would lead to the same type of conclusion. Hypothesis testing will

play an important role in the multivariate techniques that we explore in Part 2.

For now, the key point to note is that the use of a composite variable allows the

analyst to test multiple hypotheses simultaneously and thereby reduce the num-

ber of tests in any one analysis. This in turn helps to combat the problem of

inflating Type I error, which occurs when multiple, linked hypotheses are tested

in sequence. Further, hypotheses can also be tested about the partial slopes that

capture the effects of independent variables after they have been adjusted for

confounding relationships among the independent variables.

The third limitation of bivariate analyses is that of handling multivariable

patterns such as confounding, moderation, and mediation. By now it should

be clear how multiple regression provides a tool for detecting and controlling

confounding relationships. It can also be used to analyze moderating and

mediating relationships, and the general ways in which this is accomplished

bring to the surface two further strengths of multivariate analysis. These are

the capacity to represent complex effects as single terms in a regression equa-

tion and to analyze complex relationships using series of regression equations.

In our earlier discussion of moderating relationships, we suggested the

possibility that satisfaction might moderate the effect of positive affect on

well-being. Put another way, this is the possibility that positive affect and sat-

isfaction might have an interactive effect on well-being over and above their

individual effects. This additional effect can be thought of as another indepen-

dent variable that is literally the product of the positive affect and satisfaction

variables. The new variable can be added to the multiple regression equation

so that it now takes the form:

predicted well-being score == slope(positive affect) ++ slope(satisfaction)
++ slope(positive affect X satisfaction)
++ Y intercept

Values for the partial slopes in this multiple regression equation can be

found in the usual way. Our particular interest would be in the partial slope for

the interaction variable. If this partial slope was statistically significant, we would
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have evidence that there is an interaction effect over and above the individual

effects of the two independent variables. Further analysis would then be required

to find out whether the particular form of the interaction was in line with expec-

tations. Statistical details aside, the important conceptual point here is that

moderating relationships can be literally added into a composite variable and

tested in a controlled fashion, just like any other independent variable. Genera-

lizing this point further, we will see that a variable in a regression equation

can be constructed to represent all sorts of effects, which gives the technique

enormous scope for capturing complex relationships.

Regarding mediation relationships, it was suggested earlier that the effect of

satisfaction on well-being may be mediated by positive affect. This envisages a

causal chain in which satisfaction leads to increased positive affect, which in turn

enhances well-being. This pattern can be evaluated with a series of regressions

that decompose the chain of relationships. Such an approach is called hierar-
chical or sequential regression, and in the present example would proceed as

follows. A first (simple) regression would be run to provide a slope that showed

the impact of satisfaction on well-being: the first and last variables in the chain.

A second (multiple) regression would then be run to provide the partial slopes

that showed the impact of satisfaction and positive affect on well-being. If it is

true that satisfaction can only have an impact on well-being through positive

affect (total mediation), then breaking the chain by holding positive affect con-

stant should remove any relationship between satisfaction and well-being. From

a statistical standpoint, this means that we would expect a significant positive

slope for satisfaction in the first regression, but a nonsignificant partial slope in

the second regression when positive affect is held constant.

There are many other issues surrounding the analysis of mediation effects,

some of which we will pursue in later chapters. The main purpose of this dis-

cussion is to introduce the notion of sequential regression and to give an ini-

tial sense of how it might be used to analyze mediation relationship patterns.

It is worth noting that in practice sequential regression is also used to analyze

moderation or interaction effects. In the earlier example a multiple regression

would first be run to examine the independent effects of positive affect and sat-

isfaction on well-being: the so-called main effects. Then a second multiple

regression would be run that included the main effects variables and the inter-

action variable. Again our interest would be in comparing the results of the

two regressions, this time in terms of R2. Specifically, we would want to know

whether there was a noteworthy increase in R2 when the interaction variable
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was added into the regression equation. This increase can itself be tested using

an F test. If it were significant, we would have evidence that there was an inter-

action effect of the two independent variables over and above their separate

effect. As these two brief examples show, sequential regression provides a

powerful tool for the analysis of complex patterns.

3.2.3 Generalizing the Composite Variable

Multiple regression involves expressing the relationship between one

dependent variable (DV) and multiple independent variables (IV1, IV2, etc.)

into various additive components. The components can be written:

DV == [slope 1(IV1) ++ slope 2(IV2) ++  . . . . . . . .
++ Y intercept]
++ residual

Slopes 1 and 2 represent the effects of IV1 and IV2, respectively, on the

dependent variable. The dotted line indicates that we can add more independent

variables, separately and/or in combination. The terms within the square brack-

ets form a composite variable and are combined as shown to generate the pre-

dicted dependent variable score. Within this composite, the Y intercept can be

seen just as an adjustment to ensure that the predicted and actual dependent vari-

ables are aligned by having the same mean. Finally, the residual captures that

part of the dependent variable that is not predicted by the composite variable.

So far all of these multivariate ideas have been expressed in terms of mul-

tiple regression, a particular multivariate technique. It will be helpful now to

reexpress the equation above in more general terms so that we will be able to

use it each time we examine a particular technique in Part 2. This common

framework will do more than any other device to help us make sense of the

unity of multivariate techniques. The re-expression involves no more than the

replacement of some of the words in the equation as follows:

DV == [coefficient 1(effect 1) ++ coefficient 2(effect 2) ++  . . . . . . . . 
++ constant]
++ residual

The IV terms have been replaced by the more general term “effect.” An

effect may be a single variable, a so-called main effect; or it may be two or
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more variables in combination—an interaction effect. What were slopes are

now referred to as coefficients, which is just a general instruction to multiply

the variable value that follows by the coefficient value. Coefficients are also

referred to as weights, so, for example, regression slopes may be described as

regression coefficients or regression weights. The composite variable in the

square brackets is often described as a weighted linear sum since it involves

summing a set of variable scores, each of which has been weighted by a mul-

tiplier or coefficient. Rather than “weight,” though, we will adopt the term

“coefficient” since it is the most commonly used across multivariate tech-

niques. The term “Y intercept” is specific to regression so it has been replaced

by the more generic term “constant.” This word is also useful because it car-

ries the connotation of a fixed adjustment. The terms “residual” and “error” are

used synonymously. However, since error also has many other meanings,

using the more precise “residual” is preferable.

With these terms in place, we can now reflect on some aspects of this

cornerstone of multivariate analysis. The composite variable is often seen as a

device for building a statistical “model” that accounts for patterns in data,

such as the differences found in a dependent variable. As we have seen, this

modeling can be viewed from the perspective of the individual—what is the

predicted value on the dependent variable for this person; of individual differ-

ences—how much of the individual differences in the dependent variable can

be explained by differences on the independent variables; and of group differ-

ences—how are group differences on the dependent variable related to group

differences on the independent variables? The term “modeling” is helpful

because it reminds us that it is up to the analyst to choose which effects should

be included in the model. The statistical framework allows any number of vari-

ables in principle, singly or in combination, and in their original or some trans-

formed state, so the choice can be immense. If the analyst is to account for

differences in parsimonious and helpful ways, many effects have to be

excluded, but this must be achieved without loss of important information.

Well-developed theories should play an important role in guiding these choices.

The data analyses themselves, though, also have a role to play by allowing the

analyst to compare different models of the same data set. This model-compar-

ison approach is one we will encounter repeatedly in Part 2.

Although the composite variable will provide a common framework

within which we can locate all of the multivariate techniques in Part 2, we

will find that the way in which coefficients are generated will differ across

techniques. As we saw in Chapter 1, regression coefficients are calculated
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according to the principle of least squares. This means that coefficient values

are found that minimize prediction error, that is, the sum of squares of the

residuals. Another equivalent way to express the least square criterion is that it

produces coefficient values that maximize the correlation between actual and

predicted scores on the dependent variable. Each time we encounter a new

multivariate technique, we will ask what criterion is used to generate the coef-

ficients. The criterion will always be in the form of minimizing or maximizing

something, but the something will vary by technique.

This completes our introduction to the core ideas of multivariate analysis.

The composite variable, made up of a sum of weighted variables, is clearly a

powerful tool with the potential to provide answers to a wide range of com-

plex research questions. However well an analysis has been executed, though,

the problem remains that the answers may be misinterpreted. In Part 2 partic-

ular issues surrounding the correct interpretation of results from specific tech-

niques will loom large. In addition to these issues, there are what could be

called “generic” misinterpretations, in the sense that they arise often and with

respect to all multivariate techniques. In the following section we discuss the

nature of these generic misinterpretations as a final preliminary before turning

to the techniques themselves.

3.3 COMMON MISINTERPRETATIONS
OF MULTIVARIATE ANALYSES

For our purposes, generic misinterpretations can be organized around four

questions:

• What does “accounting for” differences mean?

• To whom or what do the results apply?

• What do the results of hypothesis tests mean?

• What does statistical control actually achieve?

The first three questions are not specific to multivariate analyses in

that they can be raised for simpler forms of analysis as well. However, they are

so fundamental that they deserve discussion in any introduction to data ana-

lysis. Moreover, the sophisticated and complex appearance of multivariate

analyses can mislead the unwary into believing that the problems to which

78 THE CORE IDEAS

03-Spicer.qxd  7/12/04 9:05 AM  Page 78



these questions point have been solved in some magical statistical way. In fact,

multivariate analysis only helps to deal with the issues surrounding the last

question and then only in a limited fashion, as we will see.

Answering these four questions leads quickly into deep statistical and

philosophical waters. The aim of this section is not to dive into these waters,

but to give some general sense of the ways in which misinterpretations can

arise, so that they can be avoided. The references at the end of the chapter pro-

vide lively and accessible treatments of the underlying issues for those who

wish to explore further.

3.3.1 What Does “Accounting for” Differences Mean?

The vague expression “accounting for” appears throughout this book

and was chosen because it carries fewer potentially misleading connotations

than many of the synonyms that are used in the language of data analysis. As

we have seen, data analysts talk in terms such as predicting scores on, and

explaining variance in, the dependent variable. It is also common to define the

regression slope as the amount of change in the dependent variable when the

independent variable changes by one unit. So it appears that analyses are

able to provide predictions, explanations, and verification of causal processes.

However, data analyses in and of themselves provide none of these.

The term “prediction” is a slippery one that has at least three meanings

in the research context. In its strongest sense it means making a claim about

what will happen in the future, and doing so successfully is seen as a mark of

scientific progress. In another sense prediction is a synonym for constructing

hypotheses about differences or relationships, without any reference to time.

In the final meaning a predictor is just a statistical synonym for an indepen-

dent variable. The presence of a “predictor” in an analysis suggests that the

analyst believes that it may help to account for differences in the dependent

variable and usually implies a formal hypothesis to that effect. However, even

when it is shown that the “predictor” is significantly related to the dependent

variable, this does not demonstrate any predictive power in the strong sense.

The only basis for this interpretation would be if the data had been gathered

longitudinally, where the independent variable is measured at one time and

the dependent variable some time later. So interpreting “accounting for” in

terms of prediction is justified by the design and analysis of a study, not by the

analysis itself.
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The term “explanation” is much more slippery and multidimensional than

“prediction,” so we will focus more on what it is not than on what it is. The

first thing to note is that it is different from prediction. It is possible to make

successful predictions without being able to explain why these predictions

work. Similarly, the workings of a phenomenon may be well explained, but

predicting its future states may be impossible because of the many other fac-

tors that enable or prevent the occurrence of these states. Turning back to data

analyses, if we detect “explained” variance in a dependent variable it simply

means that the independent and dependent variables covary in some system-

atic way. Why this covariation occurs remains open to explanation. Explana-

tion lies in the realm of theory, not data analysis. Good theories generate

testable hypotheses, and the results from the subsequent data analyses may be

consistent with the hypotheses or not. There is clearly an important connection

between theory and data analysis, but one should not be confused with the

other. Moreover, this connection usually comprises a series of assumptions

about measurement, sampling, and so forth, any of which may be faulty. So

theory and data analysis not only are separate, but also have a loose linkage.

All of this indicates that whatever “accounting for” means in data analysis, it

is not equivalent to explanation.

A special and valued type of scientific explanation is that which provides

understandings of causal processes. Once again, the fact that some terms in

data analysis appear to refer to causal processes does not mean that statistical

results, however sophisticated, can provide evidence of causation in and of

themselves. Such evidence requires a reliance on theory, research design, and

data analyses, tied together with explicit arguments. The most compelling

evidence typically comes from a combination of an elaborated theory from

which clear causal hypotheses can be rigorously deduced, a strong experimen-

tal design that mimics the productive or generative aspect of causation and that

ensures tight control of confounding variables, and an appropriate analysis for

the type of data that is generated. These are strong requirements that clearly

cannot be replaced by data analyses alone, however complex they may be.

Other problems may also undermine attempts to treat statistical results as

explanations of causal processes. Without a compelling theoretical explana-

tion, a potential cause may be confused with a marker of that cause. As a face-

tious example, having white hair is strongly related to the incidence of many

diseases, but no one suggests hair dye as an intervention to avoid these dis-

eases. Hair color is simply a marker for age, which is causally implicated in
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the occurrence of disease. Statistical analyses are blind to the distinction

between cause and marker, so other, additional ways must be found to develop

accurate causal accounts.

Another problem in the statistical search for causes is that even complex

statistical techniques are only designed to detect patterns consistent with what

Lieberson (1985) calls symmetric or reversible causation. Referring to an

independent variable or cause as X and a dependent variable or effect as Y will

help to clarify this idea. Symmetric or reversible causation assumes that the

amount of increase in Y produced by a unit increase in X will be the same as

the amount of decrease in Y consequent on a unit decrease in X. But this sym-

metric behavior of increases and decreases may not hold. Once achieved, an

increase in Y due to X may be irreversible whatever subsequently happens to

X. Or a decrease in X may produce a partial reversal where Y returns to an

intermediate value. Lieberson provides convincing examples of behavioral and

social phenomena that display asymmetric causal processes and teases out the

disturbing consequences for the study of such phenomena. For present pur-

poses, the noteworthy consequence is that some causal processes cannot be

captured by conventional data analyses. Most forms of analysis assume a billiard-

ball-type of causation, but this is only one form of many. Again we arrive at

the conclusion that while data analyses may contribute to the production of

causal explanations under some circumstances, they cannot do so in isolation

from other research activities, especially the activity of theorizing.

To complete this subsection, an even more fundamental issue about

causality may be raised. The view of causal process served by conventional

data analyses locates the process in the relations between variables. On this

view, causal propositions are tested by evaluating the presence/absence, mag-

nitude, and direction of relationships among variables. This is a task to which

multivariate analysis is well suited, as we have seen. However, there are other

views of causation that do not fit so well. For example, the realist conception

locates causal forces in agents, not in relationships among variables (Sayer,

1992). So a realist causal account will explain how the causal powers of agents

bring about changes. Further, such an account will refer to ways in which these

causal powers may be enabled or constrained. A fundamental consequence of

enablements and constraints is that a causal process will not necessarily be

evident in any consistent way in patterns of relationships. Sometimes you see

them, sometimes you don’t. Deep waters are close by, so we will not pursue

this further. The general point to note is that the causal accounts to which
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multivariate analyses can contribute are but one way to develop scientific

explanations. So, to interpret their results meaningfully, the analyst has to buy

into and, if necessary, defend a particular conception of causation, which itself

is problematic.

3.3.2 To Whom or What Do Statistical Results Apply?

At first glance, this question appears to refer to the issue of generalizing

beyond the data available. However, this is not the focus of this subsection.

The issue here is that of being clear about what “units” are the object of an

analysis at any given point. The potential problem of misinterpretation

this raises is that of applying results to the wrong unit of analysis. In the

analyses conducted in Part 1, we have consistently distinguished three

“levels” of analysis: the individual, individual differences, and group differ-

ences. Analysts in different disciplines focus on different levels in this sense.

A sociologist, for example, might conduct an analysis containing communi-

ties that aggregate into towns or cities. But in any statistical analysis there

will always be multiple levels, whatever they may be, and the points to be

raised here apply regardless of the nature of those levels or units. For the

sake of consistency, the discussion will continue to be framed in terms of

individuals and groups.

The most fundamental point to note is that since statistical analyses typi-

cally aggregate across individuals, the results do not refer or apply to any sin-

gle individual. As we have seen, aggregate statistics, such as regression slopes,

may be used to generate a prediction about an individual, but they do not quan-

tify any attribute of any particular individual. This may seem self-evident, and

most analysts are aware of it. However, there is a subtle version of this slide

from the aggregate to the individual that is common, at least in psychology.

Valsiner (1986b) has provided an intriguing demonstration of how even expe-

rienced researchers misinterpret simple correlations. The description of the

correlation typically begins by referring to groups or an averaged relationship,

but it quickly slides into a discourse about an idealized individual. This can be

partly explained by the tension in psychology between a disciplinary focus on

the individual and a general reliance on aggregate data to help us understand

the individual. But Valsiner argues convincingly that many other cognitive

processes lie behind the misinterpretation, and there is no reason to believe

that these processes afflict only psychologists.
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Once pointed out, the potential for interpretive confusion between group

and individual is clear though not always easily avoided. The distinction

between group differences and aggregated individual differences is harder to

grasp but important because it provides another common cause for misinterpre-

tation. The distinction can be sharpened up by considering again two bivariate

statistics that refer to group differences and individual differences, respectively:

the slope and r2. A regression slope indicates how group differences on the

dependent variable are related to group differences on the independent variable,

where the groups are defined by values of the independent variable. In contrast,

the r2 statistic indicates how individual differences in a dependent variable are

related to individual differences in an independent variable. So while the slope

can be interpreted as the averaged effect of the independent variable on the depen-

dent variable, r2 cannot be interpreted in this way. The reason for highlighting

this is that many research reports express a theoretical interest in group effects

but then give pride of place to r2-type statistics. This has the unfortunate effect

of implicitly shifting research objectives away from examining group effects to

maximizing the capture of individual differences on the dependent variable. As

we will see in Chapter 4, since r2 is highly dependent on variances and there-

fore unstable across samples, it has very limited uses. But the more fundamental

concern is that focusing on r2 at the expense of the slope can distort research

objectives and lead to misinterpretations.

3.3.3 What Do the Results of Hypothesis Tests Mean?

In Chapter 2 null hypothesis testing was introduced as the predominant

method used by social scientists to evaluate the role of chance in their results.

Statistical significance with an alpha of no more than 5% is usually the license

required for results to be treated as worthy of interpretation. This approach to

setting a threshold for interpretability, based on a rejection that the pattern

of results is due to chance, continues to play an important role throughout the

realm of multivariate analysis, as we will see in Part 2. Over many decades

methodologists have debated the meaning and worth of null hypothesis test-

ing, usually from a critical perspective. Of all the procedures explored in this

book, null hypothesis testing is the one that has received the most critical

attacks. Yet despite this, it remains a cornerstone of data analysis in the main-

stream social sciences. So it is important for any data analyst or user to gain

some sense of the criticisms and to find a comfortable personal position.
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Frank Schmidt, a very distinguished methodologist in psychology, has

provided a memorable thumbnail sketch of null hypothesis testing that cer-

tainly pulls no punches. He wrote:

If we were clairvoyant and could enter the mind of a typical researcher, we
might eavesdrop on the following thoughts:

. . . If my findings are not significant, then I know that they probably
just occurred by chance and that the true difference [or relationship] is
probably zero. If the result is significant, then I know I have a reliable
finding. The p values from the significance tests tell me whether the
relationships in my data are large enough to be important or not. I can
also determine from the p value what the chances are that these find-
ings would replicate if I conducted a new study.

Every one of these thoughts about the benefits of significance testing is false.

—Schmidt (1996, p.126)

This arresting paragraph with its knockout punch line raises a host of

issues too complex to pursue here in any depth. A few comments, though, may

help to explain Schmidt’s conclusion. The outcome of a null hypothesis test

turns on the p value, and it is misinterpretations of this probability that lay the

foundations for further misconceptions. As we noted in Chapter 2, the p value

represents the probability of finding a sample difference or relationship at least

as large as that calculated if the null hypothesis were true. The italicized words

highlight two important points. First, the probability is a conditional probabil-

ity, not simply the probability of a particular sample value occurring at all.

Second, the probability refers to the sample value, not to the hypothesis under

test. The probability of a sample value conditional on a hypothesis being true is

different from the probability of a hypothesis being true conditional on a sam-

ple value. So the p value tells us nothing directly about the probable truth of the

hypothesis. The plot thickens further when it is appreciated that the null hypoth-

esis usually under test, what Cohen (1994) calls the “nil hypothesis,” is usually

if not always false as a matter of fact. The notion that a particular population

difference or relationship is precisely zero seems an odd assumption, and yet

it provides the precisely defined start and end point for the testing process.

Finally, if there is no probabilistic basis for the sample, either by probability

sampling or random assignment, any inferences from the p value lack a clear
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point of reference. All of this suggests that while a chance interpretation based

on the p value may be the most viable of those listed by Schmidt, the exact

nature of that interpretation is not straightforward or always clear.

Schmidt also dismissed the claims that statistical significance implies

reliability and replicability of results. This can again be appreciated as a

consequence of the abstract nature and origin of the p value. In null hypo-

thesis testing, the sample value is seen as one of an infinite set of possible

sample values. This set of values has a frequency distribution—the sampling

distribution—that defines the relative frequency or probability of any given

value occurring. It is by reference to a particular sampling distribution, repre-

senting the null hypothesis, that the p value is derived. Given this highly

abstract framework, it is hard to see how any implications about the consis-

tency of future sample values could be drawn. The reliability and replicability

of results can be based only on the cross-validation provided by repeated

analyses, either on subsamples within the same study or on samples from dif-

ferent studies. The latter option has been greatly enhanced in recent years by

the advent of meta-analysis, whereby results from different studies can be

statistically amalgamated in a rigorous fashion.

The remaining claim, that statistical significance has implications for the

importance of a result, is probably the most widespread misinterpretation,

despite repeated warnings in methods texts. Even if we assume that a chance

interpretation of statistical significance is defensible, it still has no direct

implications for other sorts of significance—theoretical, practical, or other-

wise. One way to see this is first to remember that the p value can be inter-

preted as the probability of committing a Type I error—rejecting the null

hypothesis when it is actually true. Now add to this a further point from

Chapter 2, that an effective way to reduce Type I error is to increase the sam-

ple size. This means then that sample size is one of the determinants of the

p value. This is borne out in practice in large sample surveys in which even

tiny differences and relationships turn out to be statistically significant. At

best, statistical significance may be seen as a limited indicator that a result is

unlikely to be due to sampling error and that it is worthy of interpretation. It is

this subsequent interpretation, using criteria outside the analysis, which forms

a basis for claims of importance.

The cumulative effect of these concerns has led an increasing number of

methodologists to recommend the abandonment of null hypothesis testing.

Schmidt (1996) advocates this not only on the grounds of the indefensibility
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of the procedure in his view, but also because of the damage it has done. He

believes that progress, at least in psychology, has been retarded by widespread

Type II error. In other words, many hypotheses and their parent theories have

been wrongly dismissed on the statistical basis that the null hypothesis had

to be accepted, when in fact it was probably false. The most common recom-

mended alternative is to base chance interpretations of results on point and

interval estimation, as discussed in Subsection 2.3.2 of Chapter 2. It is further

recommended that replication interpretations should be based on cross-valida-

tions within studies and meta-analyses across studies. The latter are statistical

methods for combining results across studies in order to evaluate the size and

reliability of effects. Issues of substantive interpretation or importance should

remain outside the domain of statistics. The meta-analysis recommendation

has clearly taken hold as such analyses are now a commonplace in the research

literature. However, chance interpretations continue to be based on null hypo-

thesis testing in the main—reason enough to gain an understanding of its

nature and limitations.

3.3.4 What Does Statistical Control Actually Achieve?

As we noted earlier, all of the preceding interpretive problems can arise

in almost any analysis, and multivariate analyses are certainly not exempt.

Finally, we turn to an issue that only arises when the relationships among three

or more variables are being analyzed: the issue of statistical control. A naive

interpretation of results that have been statistically controlled would suggest

that the results must be somehow definitive or “correct” since they have been

“corrected.” In fact, there are various ways in which the exercise of statistical

control may lead to distortions or, at best, limitations.

The first problem for the researcher is to decide which variables might be

confounds and should therefore be included in addition to the chosen inde-

pendent and dependent variables. In principle, the list of possible confounds is

infinite, especially when we start to think about what variables might be con-

founded with confounds! The threat of the missing confound, and consequent

distortion due to undercontrol, is ever present. An understandable response to

this problem is to be overinclusive and control for a gigantic set of possible

confounds. Unfortunately, this not only reduces the statistical power of the

analysis, making it even more hungry for cases, but also runs the risk of dis-

tortion due to overcontrol. The very effects being sought may be obliterated or

86 THE CORE IDEAS

03-Spicer.qxd  7/12/04 9:05 AM  Page 86



distorted by the complex adjustments required by the presence of numerous

possible confounds. Once again we arrive at the conclusion that analyses need

to be designed with reference to external sources, particularly theory and exist-

ing evidence. Moreover, as Cohen (1990, pp. 1304–1305) has observed: gen-

erally speaking in data analysis “less is more” and “simple is better.” There is

no easy answer to the question of which variables should be controlled in an

analysis, and the results are always contingent on which choices have been

made. Interpretations of results have to always keep their contingent nature in

mind; in no sense can they be definitive.

The second problem is one we have already encountered in Chapter 2—

that of measurement quality. Whatever control variables, i.e., potential confounds,

are included, they must be measured with adequate reliability and validity. If they

are not, the statistical control process will be undermined and may produce

unpredictable distortions of the relationships between the independent and

dependent variables. It is very easy to treat control variables as second-class

citizens not deserving of the measurement efforts expended on the “real” variables.

However, the consequences of such neglect may be disastrous, especially since

the random error produced by the unreliable measurement of a single variable

can ripple through the network of relationships in a multivariate analysis, causing

widespread contamination. All of this means that any report of an analysis

should include evidence to reassure the reader that interpretations of the results

are not threatened by poor measurement of any of the variables.

The final problem concerns the consequences of statistical control for the

interpretation of variables themselves. As we saw in Section 3.2, statistical

control involves adjusting an independent variable by removing the variance

it shares with a possible confound. So the original independent variable is

replaced in the analysis by an adjusted or residualized version. This raises two

interpretive issues. The first is that the nature of this adjusted variable may

be different according to which other variables have been adjusted for.

Accordingly, the results of two different analyses focusing on a particular

independent variable may not be comparable if the set of control variables is

not the same in each analysis. The second, deeper issue is the question of how

an adjusted variable is to be interpreted at all. If the variable of positive affect,

say, has been adjusted for satisfaction, what exactly is left? It is tempting to

resort to some notion of uncovering the essence of a variable by stripping away

those features it somehow shares with other variables. But given the inherent

interrelatedness of so many variables, this does not seem very convincing.
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Once again, we are led to appreciate the contingent nature of multivariate

results and the cautious interpretations that are therefore required.

After this catalog of sticky problems, it may be tempting to stop reading

and give up on multivariate analysis, perhaps even on simpler analyses. But it

is important to reiterate that Section 3.3 has been all about general limitations

on interpretations of results from multivariate analyses. It is not an attack on

multivariate techniques themselves, but an attempt to encourage a critical and

balanced approach to them. Every technique can be misused, and the more

complex the technique, the more scope for unwitting misuse.

3.4 FURTHER READING

A good general orientation to the multivariate perspective can be found

in Cohen, Cohen, West, & Aiken (2003, Chapter 1), while Darlington (1990,

Chapters 1 and 4) provides an excellent discussion of the nature of confound-

ing and statistical control. Baron and Kenny’s (1986) discussion of moderat-

ing and mediating relationships has become the classic reference for this topic.

The texts by Lieberson (1985) and Sayer (1992, especially Chapter 6) provide

accessible critical accounts of some of the conceptual limitations of multivari-

ate analysis. Tacq (1997) pays extensive attention to the question of how multi-

variate analytic frameworks map onto the structure of research problems.

Runkel (1990) and Valsiner (1986a) examine in depth the issue of the relation-

ship between single case and aggregate analyses. Good critical accounts of

null hypothesis testing are available in Cohen (1994) and Schmidt (1996), and

a contrasting view can be found in Frick (1996).
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