
for survey data analysts to augment the design-based approach. In some

cases, both approaches produce the same results; but different results occur

in other cases. The model-based approach may not be useful in descriptive

data analysis but can be useful in inferential analysis. We will introduce the

model-based perspective where appropriate and provide references for

further treatment of the topics. Proper conduct of model-based analysis

would require knowledge of general statistical models and perhaps some

consultation from survey statisticians. Sections of the book relevant to this

alternative approach and related topics are marked with asterisks.

Since the publication of the first edition of this book, the software situation

for the analysis of complex survey data has improved considerably. User-

friendly programs are now readily available, and many commonly used sta-

tistical methods are now incorporated in the packages, including logistic

regression and survival analysis. These programs will be introduced with

illustrations in this edition. These programs are perhaps more open to misuse

than other standard software. The topics and issues discussed in this book will

provide some guidelines for avoiding pitfalls in survey data analysis.

In our presentation, we assume some familiarity with such sampling

designs as simple random sampling, systematic sampling, stratified random

sampling, and simple two-stage cluster sampling. A good presentation of

these designs may be found in Kalton (1983) and Lohr (1999). We also

assume general understanding of standard statistical methods and one of

the standard statistical program packages, such as SAS or Stata.

2. SAMPLE DESIGN AND SURVEY DATA

Our consideration of survey data focuses on sample designs that satisfy

two basic requirements. First, we are concerned only with probability sam-

pling in which each element of a population has a known (nonzero) prob-

ability of being included in the sample. This is the basis for applying

statistical theory in the derivation of the properties of the survey estimators

for a given design. Second, if a sample is to be drawn from a population, it

is necessary to be able to construct a sampling frame that lists suitable sam-

pling units that encompass all elements of the population. If it is not feasible

or is impractical to list all population elements, some clusters of elements

can be used as sampling units. For example, it is impractical to construct

a list of all households in the United States, but we can select the sample in

several stages. In the first stage, counties are randomly sampled; in the

second stage, census tracts within the selected counties are sampled; in

the third stage, street blocks are sampled within the selected tracts. Then, in

the final stage of selection, a list of households is needed only for the selected
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blocks. This multistage design satisfies the requirement that all population

elements have a known nonzero probability of being selected.

Types of Sampling

The simplest sample design is simple random sampling, which requires

that each element has an equal probability of being included in the sample

and that the list of all population elements is available. Selection of a

sample element can be carried out with or without replacement. Simple

random sampling with replacement (SRSWR) is of special interest because

it simplifies statistical inference by eliminating any relation (covariance)

between the selected elements through the replacement process. In this

scheme, however, an element can appear more than once in the sample. In

practice, simple random sampling is carried out without replacement

(SRSWOR), because there is no need to collect the information more than

once from an element. Additionally, SRSWOR gives a smaller sampling

variance than SRSWR. However, these two sampling methods are practi-

cally the same in a large survey in which a small fraction of population

elements are sampled. We will use the term SRS for SRSWOR throughout

this book unless otherwise specified.

The SRS design is modified further to accommodate other theoretical

and practical considerations. The common practical designs include sys-

tematic sampling, stratified random sampling, multistage cluster sampling,

PPS sampling (probability proportional to size), and other controlled selec-

tion procedures. These more practical designs deviate from SRS in two

important ways. First, the inclusion probabilities for the elements (also

the joint inclusion probabilities for sets for the elements) may be unequal.

Second, the sampling unit can be different from the population element of

interest. These departures complicate the usual methods of estimation and

variance calculation and, if proper methods of analysis are not used, can

lead to a bias in estimation and statistical tests. We will consider these

departures in detail, using several specific sampling designs, and examine

their implications for survey analysis.

Systematic sampling is commonly used as an alternative to SRS because

of its simplicity. It selects every k-th element after a random start (between

1 and k). Its procedural tasks are simple, and the process can easily be

checked, whereas it is difficult to verify SRS by examining the results. It is

often used in the final stage of multistage sampling when the fieldworker is

instructed to select a predetermined proportion of units from the listing of

dwellings in a street block. The systematic sampling procedure assigns each

element in a population the same probability of being selected. This ensures

that the sample mean will be an unbiased estimate of the population mean
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when the number of elements in the population (N) is equal to k times the

number of elements in the sample (n). If N is not exactly nk, then the equal

probability is not guaranteed, although this problem can be ignored when

N is large. In that case, we can use the circular systematic sampling scheme.

In this scheme, the random starting point is selected between 1 and N (any

element can be the starting point), and every k-th element is selected assum-

ing that the frame is circular (the end of the list is connected to the beginning

of the list). Systematic sampling can give an unrealistic estimate, however,

when the elements in the frame are listed in a cyclical manner with respect to

survey variables and the selection interval coincides with the listing cycle.

For example, if one selects every 40th patient coming to a clinic and the

average daily patient load is about 40, then the resulting systematic sample

would contain only those who came to the clinic at a particular time of the

day. Such a sample may not be representative of the clinic patients.

Moreover, even when the listing is randomly ordered, unlike SRS, differ-

ent sets of elements may have unequal inclusion probabilities. For example,

the probability of including both the i-th and the (i+ k)-th element is 1/k

in a systematic sample, whereas the probability of including both the i-th

and the (i+ k+ 1)-th is zero. This complicates the variance calculation.

Another way of viewing systematic sampling is that it is equivalent to

selecting one cluster from k systematically formed clusters of n elements

each. The sampling variance (between clusters) cannot be estimated from

the one selected cluster. Thus, variance estimation from a systematic sample

requires special strategies.

A modification to overcome these problems with systematic sampling

is the so-called repeated systematic sampling (Levy & Lemeshow, 1999,

pp. 101–110). Instead of taking a systematic sample in one pass through the

list, several smaller systematic samples are selected, going down the list

several times with a new starting point in each pass. This procedure not only

guards against possible periodicity in the frame but also allows variance

estimation directly from the data. The variance of an estimate from all sub-

samples can be estimated from the variability of the separate estimates from

each subsample. This idea of replicated sampling offers a strategy for esti-

mating variance for complex surveys, which will be discussed further in

Chapter 4.

Stratified random sampling classifies the population elements into strata

and samples separately from each stratum. It is used for several reasons:

(a) The sampling variance can be reduced if strata are internally homoge-

neous, (b) separate estimates can be obtained for strata, (c) administration

of fieldwork can be organized using strata, and (d) different sampling needs

can be accommodated in separate strata. Allocation of the sample across

the strata is proportionate when the sampling fraction is uniform across the
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strata or disproportionate when, for instance, a higher sampling fraction

is applied to a smaller stratum to select a sufficient number of subjects for

comparative studies. In general, the estimation process for a stratified

random sample is more complicated than in SRS. It is generally described

as a two-step process. The first step is the calculation of the statistics—for

example, the mean and its variance—separately within each stratum. These

estimates are then combined based on weights reflecting the proportion of

the population in each stratum. As will be discussed later, it also can be

described as a one-step process using weighted statistics. The estimation

simplifies in the case of proportionate stratified sampling, but the strata

must be taken into account in the variance estimation.

The formulation of the strata requires that information on the stratifica-

tion variable(s) be available in the sampling frame. When such information

is not available, stratification cannot be incorporated in the design. But stra-

tification can be done after data are collected to improve the precision of the

estimates. The so-called poststratification is used to make the sample more

representative of the population by adjusting the demographic composi-

tions of the sample to the known population compositions. Typically, such

demographic variables as age, sex, race, and education are used in poststra-

tification in order to take advantage of the population census data. This

adjustment requires the use of weights and different strategies for variance

estimation because the stratum sample size is a random variable in the

poststratified design (determined after the data are collected).

Cluster sampling is often a practical approach to surveys because

it samples by groups (clusters) of elements rather than by individual ele-

ments. It simplifies the task of constructing sampling frames, and it reduces

the survey costs. Often, a hierarchy of geographical clusters is used, as

described earlier. In multistage cluster sampling, the sampling units are

groups of elements except for the last stage of sampling. When the numbers

of elements in the clusters are equal, the estimation process is equivalent to

SRS. However, simple random sampling of unequal-sized clusters leads to

the elements in the smaller clusters being more likely to be in the sample

than those in the larger clusters. Additionally, the clusters are often strati-

fied to accomplish certain survey objectives and field procedures, for

instance, the oversampling of predominantly minority population clusters.

The use of disproportionate stratification and unequal-sized clusters com-

plicates the estimation process.

One method to draw a self-weighting sample of elements in one-stage

cluster sampling of unequal size clusters is to sample clusters with probabil-

ity proportional to the size of clusters (PPS sampling). However, this

requires that the true size of clusters be known. Because the true sizes

usually are unknown at the time of the survey, the selection probability is
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instead made proportional to the estimated size (PPES sampling). For

example, the number of beds can be used as a measure of size in a survey of

hospital discharges with hospitals as the clusters. One important consequence

of PPES sampling is that the expected sample size will vary from one primary

sampling unit (PSU) to another. In other words, the sample size is not fixed

but varies from sample to sample. Therefore, the sample size, the deno-

minator in the calculation of a sample mean, is a random variable, and, hence,

the sample mean becomes a ratio of two random variables. This type of

variable, a ratio variable, requires special strategies for variance estimation.

The Nature of Survey Data

If we are to infer from sample to population, the sample selection process

is an integral part of the inference process, and the survey data must contain

information on important dimensions of the selection process. Considering

the departures from SRS in most social surveys, we need to view the survey

data not only as records of measurements, but also as having different

representation and structural arrangements.

Sample weights are used to reflect the differing probabilities of selection

of the sample elements. The development of sample weights requires keep-

ing track of selection probabilities separately in each stratum and at each

stage of sampling. In addition, it can involve correcting for differential

response rates within classes of the sample and adjusting the sample

distribution by demographic variables to known population distributions

(poststratification adjustment). Moreover, different sample weights may be

needed for different units of analysis. For instance, in a community survey

it may be necessary to develop person weights for an analysis of individual

data and household weights for an analysis of household data.

We may feel secure in the exclusion of the weights when one of the

following self-weighting designs is used. True PPS sampling in a one-stage

cluster sampling will produce a self-weighting sample of elements, as in the

SRS design. The self-weighting can also be accomplished in a two-stage

design when true PPS sampling is used in the first stage and a fixed number

of elements is selected within each selected PSU. The same result will follow

if simple random sampling is used in the first stage and a fixed proportion

of the elements is selected in the second stage (see Kalton, 1983, chaps. 5

and 6). In practice, however, the self-weighting feature is destroyed by nonre-

sponse and possible errors in the sampling frame(s). This unintended self-

selection process can introduce bias, but it is seldom possible to assess the

bias from an examination of the sample data. Two methods employed in an

attempt to reduce the bias are poststratification and nonresponse adjustments.

Poststratification involves assigning weights to bring the sample proportion
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in demographic subgroups into agreement with the population proportion

in the subgroups. Nonresponse adjustment inflates the weights for those who

participate in the survey to account for the nonrespondents with similar char-

acteristics. Because of the nonresponse and poststratification adjustments by

weighting, the use of weights is almost unavoidable even when a self-weighting

design is used.

The sample design affects the estimation of standard errors and, hence,

must also be incorporated into the analysis. A close examination of the

familiar formulas for standard errors found in statistics textbooks and incor-

porated into most computer program packages shows that they are based

on the SRSWR design. These formulas are relatively simple because the

covariance between elements is zero, as a result of the assumed independent

selection of elements. It is not immediately evident how the formulas should

be modified to adjust for other complex sampling designs.

To better understand the need for adjustment to the variance formulas, let

us examine the variance formula for several sample designs. We first con-

sider variance for a sample mean from the SRSWOR design. The familiar

variance formula for a sample mean, �y (selecting a sample of n elements

from a population of N elements by SRSWR where the population mean

is �Y), in elementary statistics textbooks is �2/n, where �2 = P
(Yi− �Y)2/N.

This formula needs to be modified for the SRSWOR design because the

selection of an element is no longer independent of the selection of another

element. Because of the condition of not allowing duplicate selection, there

is a negative covariance [−�2/(N− 1)] between i-th and j-th sample ele-

ments. Incorporating n(n− 1) times the covariance, the variance of the sam-

ple mean for SRSWOR is �
2

n (N− n
N− 1), which is smaller than that from SRSWR

by the factor of (N− n)/(N− 1). Substituting the unbiased estimator of

�2 of [(N− 1)s2/N], the estimator for the variance of the sample mean

from SRSWOR is

V̂ �yð Þ= s2

n
1− fð Þ,

where s2 = ∑
(xi− �x)2/(n− 1) and f = n/N. Both (N− n)/(N− 1) and

(1− f) are called the finite population correction (FPC) factor. In a large

population, the covariance will be very small because the sampling fraction

is small. Therefore, SRSWR and SRSWOR designs will produce practically

the same variance, and these two procedures can be considered equivalent

for all practical purposes.

Stratified sampling is often presented as a more efficient design because it

gives, if used appropriately, a smaller variance than that given by a comparable

SRS. Because the covariances between strata are zero, the variance of the
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sample estimate is derived from the within-stratum variances, which are

combined based on the stratum sample sizes and the stratum weights. The

value of a stratified sample variance depends on the distribution of the strata

sample sizes. An optimal (or Neyman) allocation produces a sampling

variance less than or equal to that based on SRS except in extremely rare situa-

tions. For other disproportionate allocations, the sampling variance may turn

out to be larger than that based on SRS when the finite population correction

factor (FPC) within strata cannot be ignored. Therefore, it cannot be assumed

that stratification will always reduce sampling variance compared to SRS.

The cluster sampling design usually leads to a larger sampling variance

than that from SRS. This is because the elements within naturally formed

clusters are often similar, which then yields a positive covariance between

elements within the cluster. The homogeneity within clusters is measured

by the intraclass correlation coefficient (ICC)—the correlation between all

possible pairs of elements within clusters. If clusters were randomly formed

(i.e., if each cluster were a random sample of elements), the ICC would be

zero. In many natural clusters, the ICC is positive and, hence, the sampling

variance will be larger than that for the SRS design.

It is difficult to generalize regarding the relative size of the sampling

variance in a complex design because the combined effects of stratification

and clustering, as well as that of the sample weights, must be assessed.

Therefore, all observations in survey data must be viewed as products of a

specific sample design that contains sample weights and structural arrange-

ments. In addition to the sample weights, strata and cluster identification

(at least PSUs) should be included in sample survey data. Reasons for these

requirements will become clearer later.

One complication in the variance calculation for a complex survey stems

from the use of weights. Because the sum of weights in the denominator of

any weighted estimator is not fixed but varies from sample to sample, the esti-

mator becomes a ratio of two random variables. In general, a ratio estimator

is biased, but the bias is negligible if the variation in the weights is relatively

small or the sample size is large (Cochran, 1977, chap. 6). Thus, the problem

of bias in the ratio estimator is not an issue in large social surveys. Because of

this bias, however, it is appropriate to use the mean square error—the sum of

the variance plus the square of the bias—rather than the variance. However,

because the bias often is negligible, we will use the term ‘‘variance’’ even if

we are referring to mean square error in this book.

A Different View of Survey Data*

So far, the nature of survey data is described from the design-based

perspective—that is, sample data are observations sampled from a finite
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population using a particular sample selection design. The sampling design

specifies the probability of selection of each potential sample, and a proper

estimator is chosen to reflect the design. As mentioned in the introduction,

the model-based perspective offers an alternative view of sample survey

data. Observations in the finite population are viewed as realizations of a

random variable generated from some model (a random variable that fol-

lowed some probability distribution). The assumed probability model sup-

plies the link between units in the sample and units not in the sample. In the

model-based approach, the sample data are used to predict the unobserved

values, and thus inferences may be thought of as prediction problems (Royall,

1970, 1973).

These two points of view may not make a difference in SRS, where we can

reasonably assume that sample observations were independent and identi-

cally distributed from a normal distribution with mean µ and variance �.

From the model point of view, the population total is the sum of observations

in the sample and the sum of observations that are not in the sample; that is,

Y =Pi∈S yi+
P

i∈� S yi. Based on the assumption of common mean, the

estimate of population total can be made as Ŷ= n�y+ N− nð Þ�y=N�y, where

�y is the best unbiased predictor of the unobserved observations under the

model. It turns out to be the same as the expansion estimator in the design-

based approach, namely, Ŷ= (N/n)
Pn

i= 1 yi=N�y;where (N/n) is the

sample weight (inverse of selection probability in SRS). Both approaches

lead to the same variance estimate (Lohr, 1999, sec. 2.8).

If a different model were adopted, however, the variance estimates might

differ. For example, in the case of ratio1 and regression estimation under

SRS, the assumed model is Yi= βxi+ εi, where Yi is for a random variable

and xi is an auxiliary variable for which the population total is known.

Under this model, the linear estimate of the population total will be

Ŷ= P
i∈S yi+

P
i∈� S yi= n�y+ β̂

P
i∈� S xi. The first part is from the sam-

ple, and the second part is the prediction for the unobserved units based on

the assumed model. If we take β̂ as the sample ratio of �y/�x, then we have

Ŷ= n�y+ �y
�x

P
i∈� S xi= �y

�x ðn�x+Pi∈� S xiÞ= �y
�xX, where X is the population

total of xi. This is simply the ratio estimate of Y. If we take β̂ as the esti-

mated regression coefficient, then we have regression estimation. Although

the ratio estimate is known to be slightly biased from the design-based

viewpoint, it is unbiased from the model-based reasoning if the model is

correct.

But the estimate of variance by the model-based approach is slightly

different from the estimate by the design-based approach. The

design-based estimate of variance of the estimated population total
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is V̂DðŶÞ= ð1− n
NÞ N2

n

� �P ½yi−ð�y=�xÞxi�2
n−1 . The model-based estimator is

V̂MðŶÞ= ð1− x
XÞ X2

x

� �P ½{yi−ð�y=�xÞ}= ffiffiffiffixip �2
n−1 , where x is the sample total and X

is the population total of the auxiliary variable (see Lohr, 1999, sec. 3.4).

The ratio estimate model is valid when (a) the relation between yi and

xi is a straight line through the origin and (b) the variance of yi about this

line is proportional to xi. It is known that the ratio estimate is inferior to the

expansion estimate (without the auxiliary variable) when the correlation

between yi and xi is less than one-half the ratio of coefficient of variation

of xi over the coefficient of variation of yi (Cochran, 1977, chap. 6). There-

fore, the use of ratio estimation in survey analysis would require chec-

king the model assumptions. In practice, when the data set includes a large

number of variables, ratio estimation would be cumbersome to select different

auxiliary variables for different estimates.

To apply the model-based approach to a real problem, we must first be

able to produce an adequate model. If the model is wrong, the model-based

estimators will be biased. When using model-based inference in sampling,

one needs to check the assumptions of the model by examining the data

carefully. Checking the assumptions may be difficult in many circum-

stances. The adequacy of a model is to some extent a matter of judgment,

and a model adequate for one analysis may not be adequate for another

analysis or another survey.

3. COMPLEXITY OF ANALYZING SURVEY DATA

Two essential aspects of survey data analysis are adjusting for the

differential representation of sample observations and assessing the loss or

gain in precision resulting from the complexity of the sample selection

design. This chapter introduces the concept of weight and discusses the

effect of sample selection design on variance estimation. To illustrate the

versatility of weighting in survey analysis, we present two examples of

developing and adjusting sample weights.

Adjusting for Differential Representation: The Weight

Two types of sample weights are commonly encountered in the analysis

of survey data: (a) the expansion weight, which is the reciprocal of the

selection probability, and (b) the relative weight, which is obtained by scal-

ing down the expansion weight to reflect the sample size. This section

reviews these two types of weights in detail for several sample designs.

11


